For a long period, the manner of laying the yarns into ropes, was by stretching the haul on the rope-ground, parting the number of yarns required for each strand, and twisting the strands at both ends, by means of hand-hooks, or cranks. It will be obvious that this method, especially in ropes of any considerable size, is attended with serious disadvantages. The strand must always be very uneven; but the principal disadvantage, and that which gave rise to the many attempts at improvement, was, that the yarns being all of the same length before being twisted, it followed, when the rope was finished, that while those which occupied the circumference of the strand were perfectly tight, the centre yarns, on the other hand, as they were now greatly slackened by the operation of hardening or twisting the strands, actually would bear little or no part of the strain when the rope was stretched, until the former gave way. The method displayed in the preceding figures and description, is among the latest and most improved; Every yarn is given out from the bobbin frame as it is required in twisting the rope; and the twist communicated in the out-going of the carriage, can be increased or diminished at pleasure. In order to obtain a smooth and well-filled strand, it is necessary also, in passing the yarns through the upper board, to proportion the number of centre to that of outside yarns. In ordinary sized ropes, the strand seems to have the fairest appearance, when the outside yarns form from 2⁄3ds to 3⁄4ths of the whole quantity, in the portion of twist given by the carriage in drawing out and forming the strands.
In laying cables, torsion must be given both behind and before the laying top. [Figs. 947], [948], [949.] represent the powerful patent apparatus employed for this purpose. A, is a strong upright iron pillar, supported upon the great horizontal beam N, N, and bearing at its upper end the three-grooved laying top M. H, H, are two of the three great bobbins or reels round which the three secondary strands or small hawsers are wound. These are drawn up by the rotation of the three feeding rollers I, I, I, thence proceed over the three guide pulleys K, K, K, towards the laying top M, and finally pass through the tube O, to be wound upon the cable-reel D. The frames of the three bobbins H, H, H, do not revolve about the fast pillar A, as a common axis; but each bobbin revolves round its own shaft Q, which is steadied by a bracing collet at N, and a conical step at its bottom. The three bobbins are placed at an angle of 120 degrees apart, and each receives a rotatory motion upon its axis from the toothed spur wheel B, which is driven by the common central spur wheel C. Thus each of the three secondary cords has a proper degree of twist put into it in one direction, while the cable is laid, by getting a suitable degree of twist in an opposite direction, from the revolution of the frame or cage G, G, round two pivots, the one under the pulley E, and the other over O. The reel D has thus, like the bobbins H, H, two movements; that in common with its frame, and that upon its axis, produced by the action of the endless band round the pulley E, upon one of its ends, and the pulley E′ above its centre of rotation. The pulley E is driven by the bevel mill-geering P, P, P, as also the under spur wheel C. L, in [fig. 949.], is the place of the ring L, [fig. 947.], which bears the three guide pulleys K, K, K. [Fig. 948.] is an end view of the bobbin H, to show the worm or endless screw J, of [fig. 949.], working into the two snail-toothed wheels, upon the ends of the two feed-rollers I, I, which serve to turn them. The upright shafts of J, J, receive their motion from pulleys and cords near their bottom. Instead of these pulleys, and the others E, E′, bevel-wheel geering has been substituted with advantage, not being liable to slip, like the pulley-band mechanism. The axis of the great reel is made twice the length of the bobbin D, in order to allow of the latter moving from right to left, and back again alternately, in winding on the cable with uniformity as it is laid. The traverse mechanism of this part is, for the sake of perspicuity, suppressed in the figure.
Mr. William Norvell, of Newcastle, obtained a patent in May, 1833, for an improvement adapted to the ordinary machines employed for twisting hempen yarns into strands, affording, it is said, a simpler and more eligible mode of accomplishing that object, and also of laying the strands together, than has been hitherto effected by machinery. The yarns spun from the fibres of hemp, are wound upon bobbins, and these bobbins are mounted upon axles, and hung in the frame of the machine, as shown in the elevation, [fig. 950.], from which bobbins the several ends of yarn are passed upwards through slanting tubes; by the rotation of which tubes, and of the carriages in which the bobbins are suspended, the yarns become twisted into strands, and also the strands are laid so as to form ropes.
[Fig. 950 enlarged] (152 kB)
His improvements consist, first, in the application of three or more tubes, two of which are shown in [fig. 950], placed in inclined positions, so as to receive the strands immediately above the press-block a, a, and nearly in a line with A, the point of closing or laying the rope. B1, and B3, are opposite side views; B2, an edge view; and B, a side section of the same. He does not claim any exclusive right of patent for the tubes themselves, but only for their form and angular position.
Secondly, in attaching two common flat sheaves, or pulleys, C, C, [fig. 950.], to each of the said tubes, nearly round which each strand is lapped or coiled, to prevent it from slipping, as shown in the section B1. The said sheaves or pulleys are connected by a crown or centre wheel D, loose upon b, b, the main or upright axle; E, E, is a smaller wheel upon each tube, working into the said crown or centre wheel, and fixed upon the loose box I, on each of the tubes.