SAFFLOWER. This dye-stuff has been fully described under [Carthamus] and [Rouge].
SAFFRON (Saffran, Fr. and Germ.); is a filamentous cake, composed of the stigmata of the flowers of the Crocus sativus. It contains a yellow matter called polychroïte, because a small quantity of it is capable of colouring a great body of water. This is obtained by evaporating the watery infusion of saffron to the consistence of an extract, digesting the extract with alcohol, and concentrating the alcoholic solution. The polychroïte remains in the form of a brilliant mass, of a reddish-yellow colour, transparent, and of the consistence of honey. It has the agreeable smell, with the bitter pungent taste, of saffron. It is very soluble in water; and if it be stove-dried, it deliquesces speedily in the air. According to M. Henry père, polychroïte consists of 80 parts of colouring matter, combined with 20 parts of a volatile oil, which cannot be separated by distillation till the colouring matter has been combined with an alkali. By mixing one part of shred saffron with eight parts of saturated brine, and one-half part of caustic lye, and distilling the mixture, the oil comes over into the receiver, and leaves the colouring matter in the retort, which may be precipitated from the alkaline solution by an acid. The pure colouring matter, when dried, is of a scarlet hue, and then readily dissolves in alcohol, as also in the fat and volatile oils, but sparingly in water. Light blanches the reddish-yellow of saffron, even when it is contained in a full phial well corked. Polychroïte, when combined with fat oil, and subjected to dry distillation, affords ammonia, which shows that azote is one of its constituents. Sulphuric acid colours the solution of polychroïte indigo blue, with a lilac cast; nitric acid turns it green, of various shades, according to the state of dilution. Protochloride (muriate) of tin produces a reddish precipitate.
Saffron is employed as a seasoning in French cookery. It is also used to tinge confectionary articles, liqueurs, and varnishes; but rarely as a pigment.
SAGO (Sagou, Fr. and Germ.); is a species of starch, extracted from the pith of the sago palm, a tree which grows to the height of 30 feet in the Moluccas and the Philippines. The tree is cut down, cleft lengthwise, and deprived of its pith, which being washed with water upon a sieve, the starchy matter comes out, and soon forms a deposit. This is dried to the consistence of dough, pressed through a metal sieve to corn it (which is called pearling), and then dried over a fire with agitation in a shallow copper pan. Sago is sometimes imported in the pulverulent state, in which it can be distinguished from arrow-root only by microscopic examination of its particles. These are uniform and spherical, not unequal and ovoid, like those of arrow-root.
SAL AMMONIAC. The manufacture of this salt may be traced to the remotest era. Its name is derived from Ammonia, or the temple of Jupiter Ammon, in Egypt, near to which the salt was originally made. Sal ammoniac exists ready formed in several animal products. The dung and urine of camels contain a sufficient quantity to have rendered its extraction from them a profitable Egyptian art in former times, in order to supply Europe with the article. In that part of Africa, fuel being very scarce, recourse is had to the dung of these animals, which is dried for that purpose, by plastering it upon the walls. When this is afterwards burned in a peculiar kind of furnace, it exhales a thick smoke, replete with sal ammoniac in vapour; the soot of course contains a portion of that salt, condensed along with other products of combustion. In every part of Egypt, but especially in the Delta, peasants are seen driving asses loaded with bags of that soot, on their way to the sal ammoniac works.
Here it is extracted in the following manner. Glass globes coated with loam are filled with the soot pressed down by wooden rammers, a space of only two or three inches being left vacant, near their mouths. These globes are set in round orifices formed in the ridge of a long vault, or large horizontal furnace flue. Heat is gradually applied by a fire of dry camels’ dung, and it is eventually increased till the globes become obscurely red. As the muriate of ammonia is volatile at a temperature much below ignition, it rises out of the soot in vapour, and gets condensed into a cake upon the inner surface of the top of the globe. A considerable portion, however, escapes into the air; and another portion concretes in the mouth, which must be cleared from time to time by an iron rod. Towards the end, the obstruction becomes very troublesome, and must be most carefully attended to and obviated, otherwise the globes would explode by the uncondensed vapours. In all cases, when the subliming process approaches to a conclusion, the globes crack or split; and when they come to be removed, after the heat has subsided, they usually fall to pieces. The upper portion of the mass is separated, because to it the white salt adheres; and on detaching the pieces of glass with a hatchet, it is ready for the market. At the bottom of each balloon a nucleus of salt remains, surrounded with fixed pulverulent matter. This is reserved, and after being bruised, is put in along with the charge of soot in a fresh operation.
The sal ammoniac obtained by this process is dull, spongy, and of a grayish hue; but nothing better was for a long period known in commerce. Forty years ago, it fetched 2s. 6d. a pound; now, perfectly pure sal ammoniac may be had at one-fifth part of that price.
Various animal offals develope during their spontaneous putrefactive fermentation, or their decomposition by heat, a large quantity of free or carbonated ammonia, among their volatile products. Upon this principle many sal ammoniac works have been established. In the destructive distillation of pitcoal, there is a considerable quantity of ammoniacal products, which are also worked up into sal ammoniac.
The first attempts made in France to obtain sal ammoniac profitably in this manner, failed. A very extensive factory of the kind, which experienced the same fate, was under the superintendence of the celebrated Baumé, and affords one out of a thousand instances where theoretical chemists have shown their total incapacity for conducting operations on the scale of manufacturing economy. It was established at Gravelle near Charenton, and caused a loss to the shareholders in the speculation of upwards of 400,000 francs. This result closed the concern in 1787, after a foolish manipulation of 27 years. For ten years after that event, all the sal ammoniac consumed in France was imported into it from foreign countries. Since then the two works of MM. Payen and Pluvinet were mounted, and seem to have been tolerably successful. Coal soot was, prior to the introduction of the gas-works, a good deal used in Great Britain for obtaining sal ammoniac. In France, bones and other animal matters are distilled in large iron retorts, for the manufacture of both animal charcoal and sal ammoniac.