SULPHURETTED HYDROGEN, is a gas, composed of one part of hydrogen and sixteen parts of sulphur, by weight. Its specific gravity is 1·1912, compared to air = 1·0000. It is the active constituent of the sulphureous mineral waters. When breathed, it is very deleterious to animal life; and being nearly twice as dense as air, it may be poured from its generating bottle into cavities; a scheme successfully employed by M. Thenard to destroy rats in their holes.

SULPHURIC ACID, Vitriolic Acid, or Oil of Vitriol (Acid sulfurique, Fr.; Schwefelsaüre, Germ.). This important product, the agent of many chemical operations, was formerly procured by the distillation of dried sulphate of iron, called green vitriol, whence the corrosive liquid which came over, having an oily consistence, was denominated oil of vitriol. This method has been superseded in Great Britain, France, and most other countries, by the combustion of sulphur along with nitre, in large leaden chambers; but as the former process, which is still practised at Bleyl in Bohemia, and Nordhausen in Saxony, gives birth to some interesting results, I shall describe it briefly.

Into a long horizontal furnace, or gallery of brickwork, a series of earthenware retorts, of a pear shape, is arranged, with curved necks fitted into stoneware bottles or condensers. Each retort is charged with sulphate of iron, which has been previously heated to moderate redness. The first product of the distillation, a slightly acidulous phlegm, is allowed to escape; then the retort and receiver are securely luted together. The fire is now raised, and urged briskly for 36 hours, whereby the strong sulphuric acid is expelled, in the form of heavy white vapours, which condense in the cold receiver into an oily-looking liquid. The latter portions, when received in a separate refrigerator, frequently concrete into a crystalline mass, formerly called glacial oil of vitriol. About 64 pounds of strong acid may be obtained from 600 pounds of copperas. It is brown-coloured; and varies in specific-gravity from 1·842 to 1·896. Its boiling point is so low as 120° Fahr. When re-distilled in a glass retort, into a receiver surrounded with ice, a very moderate heat sends over white fumes, which condense into a soft solid, in silky filaments, like asbestos, tough, and difficult to cut. When this is exposed to the air, it emits copious fumes of sulphuric (not sulphurous) acid. It burns holes in paper as rapidly as a red-hot iron. Dropped in small quantities into water, it excites a hissing noise, like ignited metal; and in larger quantities, it occasions an explosion. By dropping a fragment of it into a poised phial containing water, and stoppering instantly, to prevent the ejection of liquid, by the ebullition which always ensues, I got a dilute acid, containing a known portion of the solid acid, from the specific gravity of which, as well as from its saturating power, I ascertained that the above solid sulphuric acid was truly anhydrous (void of water), consisting of 1 equivalent proportion of sulphur, and 3 of oxygen; or, by weight, of 16 of the former, and 24 of the latter. This acid makes a red solution of indigo.

The production of sulphuric acid from sulphur and nitre may be elegantly illustrated by means of a glass globe with a stoppered hole at its side, and four bent glass tubes inserted into a leaden cap in its upper orifice. The first tube is to be connected with a heated matrass, disengaging sulphurous acid from copper filings and sulphuric acid; the second with a retort, disengaging more slowly deutoxide of azote (nitric oxide) from copper filings and nitric acid; the third with a vessel for furnishing steam in a moderate current towards the end of the process, when no water has been previously admitted into the balloon; the fourth tube may be upright, and terminate in a small funnel. Through the opening in the side of the globe, atmospherical air is to be admitted from time to time, by removing the stopper; after which, the residuary lighter azote may be allowed to escape by the funnel orifice.

The nitric oxide first absorbs oxygen from the air, becomes, in consequence, nitrous acid vapour, which giving up one third of its oxygen to the sulphurous acid, converts this, with the aid of water, into sulphuric acid, while itself returning to the state of nitric oxide, is again qualified to take oxygen from the air, and to transfer it to the sulphurous acid gas; and thus in perpetual rotation. These oxygenating and disoxygenating processes continue until nearly the whole oxygen of the atmospheric air contained in the globe is consumed. Were there little aqueous vapour present, those gases would soon cease to operate upon each other; for though the nitric oxide became nitrous acid, this would oxygenate little of the sulphurous acid, because the three substances would condense into white crystals upon the sides of the balloon, like hoar frost upon a window-pane in winter. These indicate a deficiency of aqueous vapour, and an excess of nitrous acid. On the admission of steam, the crystals disappear, the sulphuric acid is liquefied, the nitrous acid is converted into nitric acid and nitric oxide; the former of which combines with the water, while the latter is converted by the atmospheric oxygen into nitrous acid vapour. A certain quantity of water is therefore requisite to prevent the formation of that crystalline compound, which condenses the nitrous acid, and renders it inoperative in transforming fresh portions of sulphurous acid into sulphuric. On these principles alone is it possible to oxygenate the sulphurous acid, by the nitrous acid resuming and surrendering a dose of oxygen, in perpetual alternation.

It was MM. Clement and Desormes who first had the sagacity to trace these complicated changes. They showed that nitrous acid gas and sulphurous acid gas mixed, react on each other through the intervention of moisture; that there resulted thence a combination of sulphuric acid, deutoxide of azote (nitrous gas), and water; that this crystalline compound was instantly destroyed by more water, with the separation of the sulphuric acid in a liquid state, and the disengagement of nitrous gas; that this gas re-constituted nitrous acid at the expense of the atmospheric oxygen of the leaden chamber, and thus brought matters to their primary condition. From this point, starting again, the particles of sulphur in the sulphurous acid, through the agency of water, became fully oxygenated by the nitrous acid, and fell down in heavy drops of sulphuric acid, while the nitrous gas derived from the nitrous acid, had again recourse to the air for its lost dose of oxygen. This beautiful interchange of the oxygenous principle was found to go on, in their experiments, till either the sulphurous acid, or oxygen in the air, was exhausted.

They verified this proposition, with regard to what occurs in sulphuric acid chambers, by mixing in a crystal globe the three substances, deutoxide of azote, sulphurous acid, and atmospheric air. The immediate production of red vapours indicated the transformation of the deutoxide into nitrous acid gas; and now the introduction of a very little water caused the proper reaction, for opaque vapours rose, which deposited white star-form crystals on the surface of the glass. The gases were once more transparent and colourless; but another addition of water melted these crystals with effervescence, when ruddy vapours appeared. In this manner the phenomena were made to alternate, till the oxygen of the included air was expended, or all the sulphurous acid was converted into sulphuric. The residuary gases were found to be nitrous acid gas, and azote, without sulphurous acid gas; while unctuous sulphuric acid bedewed the inner surface of the globe. Hence, they justly concluded their new theory of the manufacture of oil of vitriol to be demonstrated.

In consequence of their discovery, the manufacture of this acid has received such improvements, that a nearly double product of it may now be obtained from the same weight of materials. Indeed, the economy may be reckoned to be much greater; for one half of the more costly ingredient, the nitre, formerly employed with a given weight of sulphur, suffices at present.

In the manufacture of sulphuric acid upon the great scale, two different systems of working were long prevalent; the intermittent or periodical, and the continuous or uniform. Both were carried on in large leaden chambers. In the former, the chambers were closed during the period of combustion and gaseous combination, but were opened from time to time to introduce fresh atmospheric air. This method is, I believe, generally abandoned now, on account of the difficulties and delays attending it, though it afforded large products in skilful hands. In the latter, a continuous current of air is allowed to enter at the oven in front of the chamber for the combustion of the sulphur, and there is a constant escape of nitrogen gas, with a little sulphurous acid gas, at the remote end of the roof.