4. Boring machine.—The blocks, prepared by the foregoing saws, are placed in the machine represented in [fig. 131.] This machine has an iron frame, A A, with three legs, beneath which the block is introduced, and the screw near B being forced down upon it, confines it precisely in the proper spot to receive the borers D and E. This spot is determined by a piece of metal fixed perpendicularly just beneath the point of the borer E, shown separately on the ground at X; this piece of metal adjusts the position for the borer D, and its height is regulated by resting on the head of the screw x, which fastens the piece X down to the frame. The sides of the block are kept in a parallel position, by being applied against the heads of three screws tapped into the double leg of the frame A. The borer D is adapted to bore the hole for the centre pin in a direction exactly perpendicular to the surface resting against the three screws; the other, at E, perforates the holes for the commencement of the sheave holes. Both borers are constructed in nearly the same manner; they are screwed upon the ends of small mandrels, mounted in frames similar to a lathe. These frames, G and H, are fitted with sliders upon the angular edges of the flat broad bars, I and K. The former of these is screwed fast to the frame; the latter is fixed upon a frame of its own, moving on the centre screws, at L L, beneath the principal frame of the machine. By this means the borer E can be moved within certain limits, so as to bore holes in different positions. These limits are determined by two screws, one of which is seen at a; the other being on the opposite side is invisible. They are tapped through fixed pieces projecting up from the frame. A projecting piece of metal, from the under side of the slider K of the borer E, stops against the ends of these screws, to limit the excursion of the borer. The frames for both borers are brought up towards the block by means of levers M and N. These are centered on a pin, at the opposite sides of the frame of the machine, and have oblong grooves through them which receive screw pins, fixed into the frames G and H, beneath the pulleys P P, which give motion to the spindles.
5. The mortising machine is a beautiful piece of mechanism, but too complicated for description within the limits prescribed to this article.
6. The corner saw, [fig. 132.], consists of a mandrel, mounted in a frame A, and, carrying a circular saw L upon the extreme end of it. This mandrel and its frame being exactly similar to those at G and H [fig. 131.], does not require a separate view, although it is hid behind the saw, except the end of the screw, marked A. This frame is screwed down upon the frame B B of the machine, which is supported upon four columns. C C, D D, is an inclined bench, or a kind of trough, in which a block is laid, as at E, being supported on its edge by the plane C C of this bench, and its end kept up to its position by the other part of the bench D D.
By sliding the block along this bench, it is applied to the saw, which cuts off its angles, as is evident from the figure, and prepares it for the shaping engine. All the four angles are cut off in succession, by applying its different sides to the trough or bench. In the figure, two of them are drawn as being cut, and the third is just marked by the saw. This machine is readily adapted to different sizes of blocks, by the simple expedient of laying pieces of wood of different thickness against the plane D D, so as to fill it up, and keep the block nearer to or farther from the saw; for all the blocks are required to be cut at the same angle, though, of course, a larger piece is to be cut from large than from small blocks. The block reduced to the state of E is now taken to
7. The shaping machine.—A great deal of the apparent complication of this figure arises from the iron cage, which is provided to defend the workmen, lest the blocks, which are revolving in the circles, or chuck, with an immense velocity, should be loosened by the action of the tool, and fly out by their centrifugal force. Without this provision, the consequences of such an accident would be dreadful, as the blocks would be projected in all directions, with an inconceivable force.
8. The scoring engine receives two blocks, as they come from the shaping engine, and forms the groove round their longest diameters for the reception of their ropes or straps, as represented in the two snatch blocks and double block, under [figs. 131], [132.]