BLUE VITRIOL; [sulphate of copper].

BOMBAZINE. A worsted stuff, sometimes mixed with silk.

BONES. (Os, Fr.; Knochen, Germ.) They form the frame work of animal bodies, commonly called the skeleton; upon which the soft parts are suspended, or in which they are enclosed. Bones are invested with a membrane styled the periosteum, which is composed of a dense tissue affording glue; whence it is convertible into jelly, by ebullition with water. Bones are not equally compact throughout their whole substance; the long ones have tubes in their centres lined with a kind of periosteum, of more importance to the life of the bones than even their external coat. The flat, as well as the short and thick bones, exhibit upon their surface an osseous mass of a dense nature, while their interior presents a cavity divided into small cellules by their bony partitions.

In reference to the composition of bones, we have to consider two principal constituents; the living portion or the osseous cartilage, and the inorganic or the earthy salts of the bones.

The osseous cartilage is obtained by suspending bones in a large vessel full of dilute muriatic acid, and leaving it in a cool place at about 50° Fahr. for example. The acid dissolves the earthy salts of the bones without perceptibly attacking the cartilage, which, at the end of a short time, becomes soft and translucid, retaining the shape of the bones; whenever the acid is saturated, before it has dissolved all the earthy salts it should be renewed. The cartilage is to be next suspended in cold water, which is to be frequently changed till it has removed all the acidity. By drying, the cartilage shrinks a little, and assumes a darker hue, but without losing its translucency. It becomes, at the same time, hard and susceptible of breaking when bent, but it possesses great strength.

This cartilage is composed entirely of a tissue passing into gelatine. By boiling with water, it is very readily convertible into a glue, which passes clear and colourless through the filter, leaving only a small portion of fibrous matter insoluble by further boiling. This matter is produced by the vessels which penetrate the cartilage, and carry nourishment to the bone. We may observe all these phenomena in a very instructive manner, by macerating a bone in dilute muriatic acid, till it has lost about the half of its salts; then washing it with cold water, next pouring boiling water upon it, leaving the whole in repose for 24 hours, at a temperature a few degrees below 212° Fahr.

The cartilage, which has been stripped of its earthy salts dissolves, but the small vessels which issue from the undecomposed portion of the bone remain under the form of white plumes, if the water has received no movement capable of crushing or breaking them. We may then easily recognise them with a lens, but the slightest touch tears them, and makes them fall to the bottom of the vessel in the form of a precipitate; if we digest bones with strong hot muriatic acid so as to accelerate their decomposition, a portion of the cartilage dissolves in the acid with a manifest disengagement of carbonic acid gas, which breaks the interior mass, and causes the half-softened bone to begin to split into fibrous plates, separable in the direction of their length. According to Marx these plates, when sufficiently thin, possess, like scales of mica, the property of polarising light, a phenomenon which becomes more beautiful still when we soak them with the essential oil of the bark of the Laurus Cassia. The osseous cartilage is formed before the earthy part. The long bones are then solid, and they become hollow only in proportion as the earthy salts appear. In the new-born infant, a large portion of the bones is but partially filled with these salts, their deposition in cartilage takes place under certain invariable points of ossification, and begins at a certain period after conception, so that we may calculate the age of the foetus according to the progress which ossification has made.

The earthy parts of bones are composed principally of the phosphate and carbonate of lime in various proportions, variable in different animals, and mixed with small quantities, equally variable, of phosphate of magnesia and fluate of lime. The easiest means of procuring the earthy salts of bones consists in burning them to whiteness, but the earthy residuum procured in this manner, contains substances which did not exist beforehand in the bones, and which did not form a part of their earthy salts; as for example sulphate of soda, produced at the expense of the sulphur of the bones and the alkaline carbonate, proceeding from the cartilage with which it was combined. On the other hand, the greater part of the lime has lost its carbonic acid. As the sulphuric acid is the product of combustion, it is obvious that an acidulous solution of a fresh bone can afford no precipitate with muriate of barytes. The phosphate of lime contained in the bone-salts is a subphosphate, consisting, according to Berzelius, of three prime equivalents of the acid, and 8 of the base; or of 2,677 parts of the former, and 2,848 of the latter. It is always obtained when we precipitate the phosphate of lime by an excess of ammonia. When calcined bones are distilled in a retort with their own weight of sulphuric acid, a little fluoric acid is disengaged, and it acts on the surface of the glass. The following analyses of the bones of men and horned cattle, are given by Berzelius. They were dried after being stripped of their fat and periosteum till they lost no more weight.

Human bone.Ox bone.
Cartilage completely soluble in water32·17 -33·3
Vessels1·13
Subphosphate with a little fluate of lime53·0457·35
Carbonate of lime11·33·85
Phosphate of magnesia1·162·05
Soda with very little muriate of soda1·203·45
100·00100·00