Wheat furnishes very little ashes by incineration, not more than 0·15 per cent. of the weight; containing superphosphates of soda, lime, and magnesia.

The object of baking is to combine the gluten and starch of the flour into a homogeneous substance, and to excite such a vinous fermentative action, by means of its saccharine matter, as shall disengage abundance of carbonic acid gas in it for making an agreeable, soft, succulent, spongy, and easily digestible bread. The two evils to be avoided in baking are, hardness on the one hand, and pastiness on the other. Well-made bread is a chemical compound, in which the gluten and starch cannot be recognized or separated, as before, by a stream of water. When flour is kneaded into a dough, and spread into a cake, this cake, when baked, will be horny if it be thin, or if thick, will be tough and clammy; whence we see the value of that fermentative process, which generates thousands of little cells in the mass or crumb, each of them dry, yet tender and succulent, through the intimate combination of the moisture. By this constitution it becomes easily soluble in the juices of the stomach, or in other words, light of digestion. It is moreover much less liable to turn sour than cakes made from unfermented dough.

Rye, which also forms a true spongy bread, though inferior to that of wheat, consists of similar ingredients; namely, 61·07 of starch; 9·48 of gluten; 3·28 of vegetable albumen; 3·28 of uncrystallizable sugar; 11·09 of gum; 6·38 of vegetable fibre; the loss upon the 100 parts amounted to 5·62, including an acid whose nature the analyst, M. Einhof, did not determine. Rye flour contains also several salts, principally the phosphates of lime and magnesia. This kind of grain forms a dark-coloured bread reckoned very wholesome; comparatively little used in this country, but very much in France, Germany, and Belgium.

Dough fermented with the aid either of leaven or yeast, contains little or none of the saccharine matter of the flour, but in its stead a certain portion, nearly half its weight, of spirit, which imparts to it a vinous smell, and is volatilized in the oven; whence it might be condensed into a crude weak alcohol, on the plan of Mr. Hick’s patent, were it worth while. But the increased complexity of the baking apparatus, will probably prove an effectual obstacle to the commercial success of this project, upon which already upwards of 20,000l. sterling have been squandered.

That the sugar of the flour is the true element of the fermentation preposterously called panary, which dough undergoes, and that the starch and gluten have nothing to do with it, may be proved by decisive experiments. The vinous fermentation continues till the whole sugar is decomposed, and no longer; when if the process be not checked by the heat of baking, the acetous fermentation will supervene. Therefore if a little sugar be added to a flour which contains little or none, its dough will become susceptible of fermenting, with extrication of gas, so as to make spongy succulent bread. But since this sponginess is produced solely by the extrication of gas, and its expansion in the heat of the oven, any substance capable of emitting gas, or of being converted into it under these circumstances, will answer the same purpose. Were a solution of bicarbonate of ammonia obtained by exposing the common sesqui-carbonate in powder for a day to the air, incorporated with the dough, in the subsequent firing it will be converted into vapour, and in its extrication render the bread very porous. Nay, if water highly impregnated with carbonic acid gas be used for kneading the dough, the resulting bread will be somewhat spongy. Could a light article of food be prepared in this way, then as the sugar would remain undecomposed, the bread would be so much the sweeter, and the more nourishing. How far a change propitious to digestion takes place in the constitution of the starch and gluten, during the fermentative action of the dough, has not been hitherto ascertained by precise experiments. Medical practitioners, who derive an enormous revenue from dyspepsia, should take some pains to investigate this subject.

Dr. Colquhoun, in his able essay upon the art of making bread, has shown that its texture when prepared by a sudden formation and disengagement of elastic fluid generated within the oven, differs remarkably from that of a loaf which has been made after the preparatory fermentation with yeast. Bread which has been raised with the common carbonate of ammonia as used by the pastry-cooks, is porous no doubt, but not spongy with vesicular spaces, like that made in the ordinary way. The former kind of bread never presents that air-cell stratification which is the boast of the Parisian baker, but which is almost unknown in London. I have found it moreover very difficult to expel by the oven the last portion of the ammonia, which gives both a tinge and a taste to the bread. I believe, however, that the bicarbonate would be nearly free from this objection, which operates so much against the sesqui-carbonate of the shops.

In opposition to Mr. Edlin’s account of the excellent quality of bread made by impregnating dough with carbonic acid gas[10], Dr. Colquhoun adduces Vogel’s experiments, which show that such dough, when baked, after having been kept in a warm situation during the usual time, afforded nothing better than a hard cake, which had no resemblance to common bread. Vogel further states, as illustrative of the general necessity of providing a sufficient supply of disengaged elastic fluid within the dough, before baking it at all, that when he made various attempts to form a well-raised vesicular loaf, within the oven, by mixing flour with carbonate of magnesia, or with zinc filings, and then kneading it into a paste by means of water, acidulated with sulphuric acid, he always met with complete failure and disappointment. Dr. Colquhoun performed a series of well-devised experiments on this subject, which fully confirmed Vogel’s results, and prove that a proper spongy bread cannot be made by the agency of either carbonic acid water, or of mixtures of sesqui-carbonate of soda, and tartaric acid. The bread proved doughy and dense in every case, though less so with the latter mixture than the former. No loaf bread can, indeed, be well made by any of these two extemporaneous systems, because they are inconsistent with the thorough kneading of the dough. It is this process which renders dough at once elastic enough to expand when carbonic acid gas is generated within it, and cohesive enough to confine the gas when it is generated. The whole gas of the loaf is disengaged in its interior by a continuous fermentation, after all the processes of kneading have been finished; for the loaf, after being kneaded, weighed out, and shaped, is set aside till it expands gradually to double its bulk, before it is put into the oven. But when a dough containing sesqui-carbonate of soda is mixed with one containing muriatic acid, in due proportions to form the just dose of culinary salt, the gas escapes during the necessary incorporation of the two, and the bread formed from it is dense and hard. Dr. Whiting has, however, made this old chemical process the subject of a new patent for baking bread.

[10] Treatise on the Art of Bread Making, p. 56.

When the baker prepares his dough, he takes a portion of the water needed for the batch, having raised its temperature to from 70° to 100° F., dissolves a certain proportion of his salt in it, then adds the yeast, and a certain quantity of his flour. This mixture, called the sponge, is next covered up in the small kneading-trough, alongside of the large one, and let alone for setting in a warm situation. In about an hour, signs of vinous fermentation appear, by the swelling and heaving up of the sponge, in consequence of the generation of carbonic acid; and if it be of a semi-liquid consistence, large air bubbles will force their way to the surface, break, and disappear in rapid succession. But when the sponge has the consistence of thin dough, it confines the gas, becomes thereby equably and progressively inflated to double its original volume; when no longer capable of containing the pent-up air, it bursts and subsides. This process of rising and falling alternately might be carried on during twenty-four hours, but the baker has learned by experience to guard against allowing full scope to the fermentative principle. He generally interferes after the first, or at furthest after the second or third dropping of the sponge; for were he not to do so, the bread formed with such dough would invariably be found sour to the taste and the smell. Therefore he adds at this stage to the sponge the reserved proportions of flour, salt, and water, which are requisite to make the dough of the desired consistence and size; and next incorporates the whole together by a long and laborious course of kneading. When this operation has been continued till the fermenting and the fresh dough have been intimately blended, and till the glutinous matter of both is worked into such union and consistence that the mass becomes so tough and elastic as to receive the smart pressure of the hand without adhering to it, the kneading is suspended for some time. The dough is now abandoned to itself for a few hours, during which it continues in a state of active fermentation throughout its entire mass. Then it is subjected to a second but much less laborious kneading, in order to distribute the generated gas as evenly as possible among its parts, so that they may all partake equally of the vesicular structure. After this second kneading, the dough is weighed out into the portions suitable to the size of bread desired; which are of course shaped into the proper forms, and once more set aside in a warm situation. The continuance of the fermentation soon disengages a fresh quantity of carbonic acid gas, and expands the lumps to about double their pristine volume. These are now ready for the oven, and when they finally quit it in the baked state, are about twice the size they were when they went in. The generation of the due quantity of gas should be complete before the lumps are transferred to the oven; because whenever they encounter its heat, the process of fermentation is arrested; for it is only the previously existing air which gets expanded throughout every part of the loaf, swells out its volume, and gives it the piled and vesicular texture. Thus the well-baked loaf is composed of an infinite number of cellules filled with carbonic acid gas, and apparently lined with a glutinous membrane of a silky softness. It is this which gives the light, elastic porous constitution to bread.

After suffering the fermentative process to exhaust itself in a mass of dough, and the dough to be brought into that state in which the addition of neither yeast, nor starch, nor gluten will produce any effect in restoring that action, if we mix in 4 per cent. of saccharine matter, of any kind, with a little yeast, the process of fermentation will immediately re-commence, and pursue a course as active and lengthened as at first, and cease about the same period.[11]