I have tried the indigo test in many ways, but never could confide in it. The sulphuric solution of indigo is very liable to change by keeping, and thus to lead to erroneous results. The method of testing the chlorides by green sulphate of iron, described under [bleaching], is in my opinion preferable to the above.

M. Gay Lussac has recently proposed another proof of chlorine, founded on the same principle as that by green vitriol, namely, the quantity of it requisite to raise a metallic substance from a lower to a higher stage of oxidizement. He now prescribes as the preferable plan of chlorometry, to pour very slowly from a graduated glass tube, a standard solution of the chloride, to be tested upon a determinate quantity of arsenious acid dissolved in muriatic acid, till the whole arsenious be converted into the arsenic acid. The value of the chloride is greater the less of it is required to produce this effect. It is easy to recognize, by a few drops of solution of indigo, the instant when all the arsenious acid has disappeared; for then the blue tint is immediately effaced, and cannot be restored by the addition of a fresh drop of the indigo solution.

In graduating the arsenical chlorometer, M. Gay Lussac takes for his unity the decolouring power of one volume of chlorine at 32° Fahr., and divides it into 100 parts. Suppose that we prepare a solution of chlorine containing its own volume of the gas, and an arsenious solution, such, that under a like volume, the two solutions shall reciprocally destroy each other. Let us call the first, the normal solution of chlorine, and the second, the normal arsenious solution. We shall fix at 10 grammes the weight of chloride of lime subjected to trial; and dissolve it in water, so that the total volume of the solution shall be a litre (1000 grammes measure), including the sediment. If we take a constant volume of this solution, 10 centimetres cube (10 gramme measures), for example, divided into 100 equal parts, and pour into it gradually the arsenious solution (measured by like portions), till the chlorine be destroyed, the bleaching power will be proportional to the number of portions of the arsenious solution, which the chloride shall have required. If the chloride has destroyed 100 portions of the arsenious solution, its title will be 100; if it has destroyed 80 portions, its title will be 80, &c. and so forth.

On pouring the acidulous arsenious solution into the chloride of lime, this will become very acid; the chlorine will be emitted abundantly, and the proof will be quite incorrect. If, on the contrary, we pour the solution of the chloride of lime into the arsenious solution, this evil will not occur, since the chlorine will always find plenty of arsenious acid to act upon, whatever be the dilution of the one or the other; but in this case, the standard of the chlorine is not given directly, as it is in the inverse ratio of the number of portions which are required to destroy the measures of the arsenious solution. If 50 portions of the chloride have been required, the proof will be 100 × 10050 = 200°; if 200 have been required, the proof will be 100 × 100200 = 50°, &c. This evil is not, however, very serious, since we have merely to consult a table, in which we can find the proof corresponding to each volume of the chloride employed for destroying the constant measure of the arsenious solution. The arsenious solution should be slightly tinged with sulphate of indigo, so as to show, by the disappearance of the colour, the precise point or instant of its saturation with chlorine, that is, its conversion into arsenic acid. If the arsenious acid be pure, the normal solution may be made directly by dissolving 4·439 grammes of it in muriatic acid (free from sulphurous acid), and diluting the solution till it occupies one litre, or 1000 grammes measure. Annales de Chimie et Physique, LX. 225.

CHOCOLATE. Is an alimentary preparation of very ancient use in Mexico, from which country it was introduced into Europe by the Spaniards in the year 1520, and by them long kept a secret from the rest of the world. Linnæus was so fond of it, that he gave the specific name, theobroma, food of the gods, to the cacao tree which produced it. The cacao-beans lie in a fruit somewhat like a cucumber, about 5 inches long and 312 thick, which contains from 20 to 30 beans, arranged in 5 regular rows with partitions between, and which are surrounded with a rose-coloured spongy substance, like that of water-melons. There are fruits, however, so large as to contain from 40 to 50 beans. Those grown in the West India islands, Berbice and Demerara, are much smaller, and have only from 6 to 15; their development being less perfect than in South America. After the maturation of the fruit, when their green colour has changed to a dark yellow, they are plucked, opened, their beans cleared of the marrowy substance, and spread out to dry in the air. Like almonds, they are covered with a thin skin or husk. In the West Indies they are immediately packed up for the market when they are dried; but in the Caraccas they are subjected to a species of slight fermentation, by putting them into tubs or chests, covering them with boards or stones, and turning them over every morning, to equalize the operation. They emit a good deal of moisture, lose the natural bitterness and acrimony of their taste by this process, as well as some of their weight. Instead of wooden tubs, pits or trenches dug in the ground are sometimes had recourse to for curing the beans; an operation called earthing (terrer). They are lastly exposed to the sun, and dried. The latter kind are reckoned the best; being larger, rougher, of a darker brown colour, and, when roasted, throw off their husk readily, and split into several irregular fragments; they have an agreeable mild bitterish taste, without acrimony. The Guiana and West India sorts are smaller, flatter, smoother-skinned, lighter coloured, more sharp and bitter to the taste. They answer best for the extraction of the butter of cacao, but afford a less aromatic and agreeable chocolate. According to Lampadius, the kernels of the West India cacao beans contain, in 100 parts, besides water, 53·1 of fat or oil, 16·7 of an albuminous brown matter, which contains all the aroma of the bean, 10·91 of starch, 734 of gum or mucilage, 0·9 of lignine, and 2·01 of a reddish dye stuff somewhat akin to the pigment of cochineal. The husks form 12 per cent. of the weight of the beans; they contain no fat, but, besides lignine, or woody fibre, which constitutes half their weight, they yield a light brown mucilaginous extract by boiling in water. The fatty matter is of the consistence of tallow, white, of a mild agreeable taste, called butter of cacao, and not apt to turn rancid by keeping. It melts only at 122° Fahr., and should, therefore, make tolerable candles. It is soluble in boiling alcohol, but precipitates in the cold. It is obtained by exposing the beans to strong pressure in canvass bags, after they have been steamed or soaked in boiling water for some time. From 5 to 6 ounces of butter may be thus obtained from a pound of cacao. It has a reddish tinge when first expressed, but it becomes white by boiling with water.

The beans, being freed from all spoiled and mouldy portions, are to be gently roasted over a fire in an iron cylinder, with holes in its ends for allowing the vapours to escape; the apparatus being similar to a coffee-roaster. When the aroma begins to be well developed, the roasting is known to be finished; and the beans must be turned out, cooled, and freed by fanning and sifting from their husks. The kernels are then to be converted into a paste, either by trituration in a mortar heated to 130° F., or by the following ingenious and powerful machine. The chocolate paste has usually in France a little vanilla incorporated with it, and a considerable quantity of sugar, which varies from one third of its weight to equal parts. For a pound and a half of cacao, one pod of vanilla is sufficient. Chocolate paste improves in its flavour by keeping, and should therefore be made in large quantities at a time. But the roasted beans soon lose their aroma, if exposed to the air.

[Fig. 290.] represents the chocolate mill. Upon the sole A, made of marble, six conical rollers B B, are made to run by the revolution of the upright axis or shaft q, driven by the agency of the fly wheel E and bevel wheels I K. The sole A rests upon a strong iron plate, which is heated by a small stove, introduced at the door H. The wooden frame work F, forms a ledge, a few inches high, round the marble slab, to confine the cocoa in the act of trituration. C is the hopper of the mill through which the roasted beans are introduced to the action of the rollers, passing first into the flat vessel D to be thence evenly distributed. After the cacao has received the first trituration, the paste is returned upon the slab, in order to be mixed with the proper quantity of sugar, and vanilla, previously sliced and ground up with a little hard sugar. When the chocolate is sufficiently worked, and while it is thin with the heat and trituration, it must be put carefully into the proper moulds. If introduced too warm, it will be apt to become damp and dull on the surface; and, if too cold, it will not take the proper form. It must be previously well kneaded with the hands to ensure the expulsion of every air bubble.

In Barcelona, chocolate mills on this construction are very common, but they are turned by a horse-gin set to work in the under story, corresponding to H in the above figure. The shaft G is, in this case, extended down through the marble slab, and is surrounded at its centre with a hoop to prevent the paste coming into contact with it. Each of these horse-mills turns out about ten pounds of fine chocolate in the hour, from a slab two feet seven inches in diameter.