The atmosphere within the tube being of a higher temperature than without, a current of air constantly ascends and escapes at the upper aperture K, and its place is supplied by fresh air from the surrounding atmosphere, entering the tube below. The fresh air thus admitted at the bottom of the tube being cold and dry, will be suited to take up the heat and moisture within, because the water within the tube being in a state of dispersion as rain, presents to the air many points, or a very extended surface, and also because it is of a higher temperature than the air; and, besides, cold dry air is continually renewed, and a source of warmth is furnished by the latent caloric to the steam, as fast as it is evolved. Thus a portion of the descending rain, or water, is evaporated, and the effect of this evaporation is to subtract caloric not only from the water held in contact with the coils of the worm-pipe by the cloth enveloping it, but also from the hot vapours which pass through the worm. This process of evaporation has, therefore, a cooling power, which is but slight in the lower part of the chimney or tube K; because the temperature of the water, or rain, and of the worm, at this part, are of a lower temperature; but its refrigerating power increases as it rises towards the colander, and there it acquires its maximum of intensity, so that at any point between the lower aperture of the cylinder and the colander, the current of air is always a little cooler than the atmosphere of the region through which it passes (that is, at its maximum); and in passing this region of higher temperature, it is not only put in equilibrium of temperature, but also made to take up an additional quantity of aqueous vapours, which equalises the new temperature it acquires with its capacity of saturation. The cooling caused by the evaporation acts in an incessant and progressive manner from the lower aperture of the cylinder to the under side of the colander; and this cooling not only acts as an agent of the evaporation which the current of air cools, but it refrigerates also, because it becomes warmed in abstracting caloric from the vapours or liquids passing through the worm; and this refrigeration acts also incessantly and progressively from the lower part of the tube or chimney to the colander.

The patentee states, in conclusion, that “the velocity or force of the current of air that passes through the chimney or tube K, can be accelerated by artificial means, either by conducting the air and vapour passing from the upper aperture of the cylinder into the chimney or flues of a furnace, or by means of a revolving, forcing, or exhausting fan, or ventilator, or any other contrivance which will produce an increased current of air, but which it is not necessary to be particularly described, as I only wish to explain the principles of a simple apparatus, constructed in any convenient form; and I would remark, that the area of the lower aperture through which the air is introduced into the chimney or tube K, and also the area of the upper aperture, or that through which it passes to the atmosphere, should be in accordance with the effect intended to be obtained.

“It is further to be remarked, that in order to obtain from this apparatus the best effect, the velocity of the current of air must be itself a maximum; and as the speed or velocity of the current of air is owing to and determined by the excess of the temperature of the descending water, or rain, and of the coils of the worm to that of the exterior atmosphere, it ensues that the temperature of the water, or rain, must be a maximum. But this excess of temperature is a maximum only when the source of the rain is at the same temperature as the vapours to be condensed: if less warm, it would attract less air; or, if warmer, it would augment the temperature of the vapours intended to be condensed. Consequently, the shower of water employed in the tube K, as the agent for cooling, bestows its maximum of effect when it is as warm as the vapours to be condensed; therefore, I may express this proposition, viz., ‘That in refrigerating with water, less of it may be expended when it is warm than when it is cold, and that the least quantity of water will be evaporated when it is as warm as the aqueous or spirituous vapours upon which it is to operate.’

“This proposition may appear strange, nevertheless it is conformable to the laws of nature; and appears only strange, because until now warm water has not been employed with currents of air for refrigerating.

“Hence it is necessary to raise the temperature of the water in the colander to the temperature of the vapours to be condensed: therefore, I cause the lukewarm water, pumped from the reservoir E, to circulate in the chamber C. In this circulation it also begins to act as a refrigerating medium, taking up a portion of heat from the vapours that pass through the pipe B, and afterwards it acts as a further condenser in the cylinder, in the way described. Finally, the portion of this water that is still in the fluid state, after having fallen down from coil to coil, arrives lukewarm to the inclined surface L, which conducts it into the reservoir E, from whence it is pumped up into the chamber C, as before described.

“The tube or chimney K, may have more or less altitude; the higher it is the greater is the current produced. The force or velocity of the current of air can be governed by the areas of the introduction and exit apertures. If the cylinder rises only to the height of the sieve, the effect is much less than when it is prolonged beyond this height. I would further remark, that if the cylinder was removed, a slight effect might be produced, provided that a current of air be preserved in the cylindrical space limited by the coils of the worm, and also if the current was produced between the coils; or a central passage might be formed in an apparatus of another shape than that above described.

“I have only shown the application of the worm, because intending only to explain the principles of this method of condensing and refrigerating.

“The small quantity of water wasted in this manner of condensation, (that is, that portion passed off to the atmosphere in the form of vapours, at the upper aperture of the cylinder K,) may be replaced by a small stream of cold water, which may be brought to the apparatus, and perhaps most conveniently introduced into the reservoir E, or into the chamber between the pipes B and C. When operating upon aqueous vapours, the waste of water is always less in weight than that of the vapours liquefied. When this apparatus is applied to the purposes of distillation, the end of the worm should terminate in a vessel M, which is to receive the produce of the condensation. It will be seen that this improved process is applicable to various purposes, where condensation or refrigeration is required; for instance, in the boiling or concentration of sugar; to condensing and refrigerating distilled vapours, or steam, or saline liquids, either in vacuum or not; to cooling brewers’ worts; and to the refrigeration of other liquors, or any other processes, when it may be required.”

I have inserted the specification of this patent verbatim. M. Derosne has busied himself during a long life with a prodigious number of ingenious little contrivances for clarifying and boiling syrups, distillation, &c., but he has in this invention taken a bolder flight, having secured the exclusive privilege of condensing vapours, and cooling liquors, with hot water, in preference to cold. No man at all versant in the scientific doctrines, or the practical applications of caloric, will ever seek to meddle with his monopoly of such a scheme. He may find, perhaps, some needy coppersmith ready to espouse that or any other equally foolish project, provided a productive job can be made of it, against credulous customers.

For some rational methods of cooling liquors, and condensing vapours, see [Refrigeration], [Still], and [Sugar].