The ingots of copper are laid upon the sole of a reverberatory furnace to be heated; they are placed alongside each other, and they are formed into piles in a cross-like arrangement, so that the hot air may pass freely round them all. The door of the furnace is shut, and the workman looks in through a peep-hole from time to time, to see if they have taken the requisite temperature; namely, a dull red. The copper is now passed between the cylinders; but although this metal be very malleable, the ingots cannot be reduced to sheets without being several times heated; because the copper cools, and acquires, by compression, a texture which stops the progress of the lamination.

These successive heatings are given in the furnace indicated above; though, when the sheets are to have a very great size, furnaces somewhat different are had recourse to. They are from 12 to 15 feet long, and 5 wide. See [Brass].

The copper, by successive heating and lamination, gets covered with a coat of oxide, which is removed by steeping the sheets for a few days in a pit filled with urine; they are then put upon the sole of the heating furnace. Ammonia is formed, which acts on the copper oxide, and lays bare the metallic surface. The sheets are next rubbed with a piece of wood, then plunged, while still hot, into water, to make the oxide scale off; and lastly, they are passed cold through the rolling press to smooth them. They are now cut square, and packed up for home sale or exportation.

The following estimate has been given by MM. Dufrénoy and Elie de Beaumont of the expense of manufacturing a ton of copper in South Wales.

£s.d.
1212 tons of ore, yielding 812 per cent. of copper5500
20 tons of coals800
Workmen’s wages, rent, repairs, &c.1300
7600

The exhalations from the copper smelting works are very detrimental to both vegetable and animal life. They consist of sulphurous acid, sulphuric acid, arsenic and arsenious acids, various gases and fluoric vapours, with solid particles mechanically swept away into the air, besides the coal smoke. Mr. Vivian has invented a very ingenious method of passing the exhalations from the calcining ores and matts along horizontal flues or rather galleries of great dimensions, with many crossings and windings of the current, and exposure during the greater part of the circuit to copious showers of cold water. By this simple and powerful system of condensation, the arsenic is deposited in the bottoms of the flues, the sulphurous acid is in a great measure absorbed, and the nuisance is remarkably abated.

The following figures represent certain modifications of the copper calcining and smelting copper furnaces of Swansea.

[Fig. 304.] is the section of the roasting furnace lengthwise; [fig. 303.] the ground plan; in which a is the fire-door; b the grate; c the fore-bridge; d the chimney; e e working apertures on each of the long sides of the furnace, through which the ore is introduced, spread, and turned over; f f cast-iron hoppers; g g openings in the vaulted roof; h the hearth-sole; i i holes in this; k a vaulted space under the hearth. The hearth has a suitable oval shape, and is covered with a flat arch. Its length is 16 feet, breadth 1312, mean height 2 feet.