DEXTRINE, is a matter of a gummy appearance into which the interior substance of the molecules of starch are converted, through the influence of diastase or acids. It derives its name from the circumstance that it turns, more than any other body, the plane of polarization to the right hand. It is white, insipid, without smell, transparent in thin plates, friable, with a glassy fracture when well dried. It is not altered by the heat of boiling water, but at 280° F. it becomes brown, and acquires the flavour of toasted bread. It is not coloured by iodine, like starch, it does not form muric acid with the nitric, as common gum does, and it is transformed into grape sugar, when heated along with dilute sulphuric acid or diastase.

Dextrine is much employed by the French pastrycooks and confectioners; it is a good substitute for gum arabic in medicine. For the conversion of potato or other starch into dextrine, by the action of [diastase], see this article.

DIAMOND. Since this body is merely a condensed form of carbon, it cannot in a chemical classification be ranked among stones; but as it forms in commerce the most precious of the gems, it claims our first attention in a practical treatise on the arts. Diamonds are distinguishable by a great many peculiar properties, very remarkable and easily recognized, both in their rough state, and when cut and polished. Their most absolute and constant character is a degree of hardness superior to that of every mineral, whence diamonds scratch all other bodies, and are scratched by none. Their peculiar adamantine lustre, not easy to define, but readily distinguishable by the eye from that of every other gem, is their most obvious feature. Their specific gravity is 3·55. Whether rough or polished, diamonds acquire by friction, positive electricity, but do not retain it for more than half an hour. The natural form of diamonds is derivable from an octahedron, and they never present crystals having one axis longer than the other. Their structure is very perceptibly lamellar, and therefore, notwithstanding their great hardness, they are brittle and give way in the line of their cleavage, affording a direct means of arriving at their primitive form, the regular octahedron.

The diamond possesses either single or double refraction, according to its different crystalline forms; its refractive power on light is far greater than it ought to be in the ratio of its density; the index of refraction being 2·44, whence Newton long ago supposed it to consist of inflammable matter. Its various forms in nature present a circumstance peculiar to this body; its faces are rarely terminated by planes, like most other native crystals, but they are often rounded off, and the edges between them are curved. When these secondary faces are attentively examined with a lens, we remark that they are marked with striæ, sometimes very fine and almost imperceptible, but at others well defined; and that these striæ are parallel to the edges of the octahedron, and consequently to those of the plates that are applied on the primitive faces of this figure.

Diamonds are usually colourless and transparent; when coloured, their ordinary tint verges upon yellow, or smoke-yellow, approaching sometimes to blackish-brown. Green diamonds are next to yellow the most common; the blue possess rarely a lively hue, but they are much esteemed in Scotland. The rose or pink diamonds are the most valued of the coloured kind, and exceed sometimes in price the most limpid; though generally speaking the latter are the most highly prized.

The geological locality of the diamond seems to be in diluvial gravel, and among conglomerate rocks; consisting principally of fragments of quartz, or rolled pebbles of quartz mixed with ferruginous sand, which compose sometimes hard aggregated masses. This kind of formation is called cascalho in Brazil. Its accompanying minerals are few in number, being merely black oxide of iron, micaceous iron ore, pisiform iron ore, fragments of slaty jasper, several varieties of quartz, principally amethyst. In Mr. Heuland’s splendid collection there was a Brazilian diamond imbedded in brown iron ore; another in the same, belonging to M. Schuch, librarian to the Crown Princess of Portugal; and in the cabinet of M. Eschwege there is a mass of brown iron ore, containing a diamond in the drusy cavity of a green mineral, conjectured to be arseniate of iron. From these facts it may be inferred with much probability that the matrix or original repository of the diamond of Brazil is brown iron ore, which occurs in beds of slaty quartzose micaceous iron ore, or in beds composed of iron-glance and magnetic iron ore, both of which are apparently subordinate in that country to primitive clay slate.

The loose earth containing diamonds lies always a little way beneath the surface of the soil, towards the lower outlet of broad valleys, rather than upon the ridges of the adjoining hills.

Only two places on the earth can be adduced with certainty, as diamond mines, or rather districts; a portion of the Indian peninsula, and of Brazil.

India has been celebrated from the most remote antiquity as the country of diamonds. Its principal mines are in the kingdoms of Golconda and Visapour, extending from Cape Comorin to Bengal, at the foot of a chain of mountains called the Orixa, which appear to belong to the trap rock formation. In all the Indian diamond soils, these gems are so dispersed, that they are rarely found directly, even in searching the richest spots, because they are enveloped in an earthy crust, which must be removed before they can be seen. The stony matter is therefore broken into pieces, and is then, as well as the looser earth, washed in basins scooped out on purpose. The gravel thus washed is collected, spread out on a smooth piece of ground, and left to dry. The diamonds are now recognized by their sparkling in the sun, and are picked out from the stones.

The diamond mines of Brazil were discovered in 1728, in the district of Serro-do-Frio. The ground in which they are imbedded has the most perfect resemblance to that of the East Indies, where the diamonds occur. It is a solid or friable conglomerate, consisting chiefly of a ferruginous sand, which encloses fragments of various magnitude of yellow and bluish quartz, of schistose jasper, and grains of gold disseminated with oligist iron ore; all mineral matters different from those that constitute the neighbouring mountains; this conglomerate, or species of pudding-stone, almost always superficial, occurs sometimes at a considerable height on the mountainous table-land. The most celebrated diamond mine is that of Mandarga, on the Jigitonhonha, in the district of Serro-do-Frio to the north of Rio-Janeiro. The river Jigitonhonha, three times broader than the Seine at Paris, and from 3 to 9 feet deep, is made nearly dry, by drawing the waters off with sluices at a certain season; and the cascalho or diamond-gravel is removed from the channel by various mechanical means, to be washed elsewhere at leisure. This cascalho, the same as the matrix of the gold mines, is collected in the dry season, to be searched into during the rainy; for which purpose it is formed into little mounds of 15 or 16 tons weight each. The washing is carried on beneath an oblong shed, by means of a stream of water admitted in determinate quantities into boxes containing the cascalho. A negro washer is attached to each box; inspectors are placed at regular distances on elevated stools, and whenever a negro has found a diamond, he rises up and exhibits it. If it weighs 1712 carats, he receives his liberty. Many precautions are taken to prevent the negroes from secreting the diamonds. Each squad of workmen consists of 200 negroes, with a surgeon and an almoner or priest.