If the dyer tries to realize the preceding results by the mixture of dyes, he will succeed only with a certain number of them. Thus, with red and yellow he can make orange; with blue and yellow, green; with blue and red, indigo or violet. These facts, the results of practice, have led him to conclude that there are only three primitive colours; the red, yellow, and blue. If he attempts to make a white, by applying red, yellow, and blue dyes in certain quantities to a white stuff, in imitation of the philosopher’s experiment on the synthesis of the sunbeam, far from succeeding, he will deviate still further from his purpose, since the stuff will by these dyes become so dark coloured, as to appear black.

This fact must not, however, lead us to suppose that in every case where red, yellow, and blue are applied to white cloth, black is produced. In reality, when a little ultramarine, cobalt blue, Prussian blue, or indigo, is applied to goods with the view of giving them the best possible white, if only a certain proportion be used, the goods will appear whiter after this addition than before it. What happens in this case? The violet blue forms, with the brown yellow of the goods, a mixture tending to white, or less coloured than the yellow of the goods and the blue together were. For the same reason, a mixture of prussian blue and cochineal pink has been of late years used in the whitening or the azuring of silks, in preference to a pure blue; for on examining closely the colour of the silk to be neutralized, it was found by the relations of the complementary colours, that the violet was more suitable than the indigo blue formerly used. The dyer should know, that when he applies several different colouring matters to stuffs, as yellow and blue, for example, if they appear green, it is because the eye cannot distinguish the points which reflect the yellow from those which reflect the blue; and that, consequently, it is only where the distinction is not possible, that a mixture or combination appears. When we examine certain gray substances, such as hairs, feathers, &c., with the microscope, we see that the gray colour results from black points, disseminated over a colourless or slightly coloured surface. In reference to compound colours, this instrument might be used with advantage by the dyer.

The dyer should be acquainted also with the law of the simultaneous contrast of colours. When the eye views two colours close alongside of each other, it sees them differing most in their optical composition, and in the height of their tone, when the two are not equally pale or full-bodied. They appear most different as to their optical composition, when the complementary of the one of them is added to the colour of the other. Thus, put a green zone alongside of an orange zone; the red colour complementary of green, being added to the orange, will make it appear redder; and in like manner the blue, complementary of orange, being added to the green, will make it appear more intensely blue. In order to appreciate these differences, let us take two green stripes and two orange stripes, placing one of the green stripes near one of the orange; then place the two others so that the green stripe may be at a distance from the other green stripe, but on the same side, and the orange at a distance from the other orange, also on the same side.

As to the contrast in the height of the tone, we may satisfy ourselves by taking the tones No. 1. No. 2. No. 15. and No. 16. from a graduated pallet of reds: for example, by placing No. 2. and No. 15. close alongside, putting No. 1. at a distance from No. 2. on the same side, and No. 16. at a distance from No. 15. on the same side,—we shall see (if the pallet is sufficiently lowered in tone) No. 2. equal to No. 1., and No. 15. equal to No. 16.; whence it follows that No. 2., by the vicinity of No. 15., will appear to have lost some of its colour; while No. 15. will appear to have acquired colour. When black or gray figures are printed upon coloured grounds, these figures are of the colour complementary of the ground. Consequently, in order to judge of their colour, we must cut out spaces in a piece of gray or white paper, so as to allow the eye to see nothing but the figures; and if we wish to compare figures of the same colour, applied upon grounds of different colours, we can judge rightly of the figures only by insulating them from the grounds.

The relations of dyeing with the principles of chemistry, constitute the theory of the art, properly speaking; this theory has for its basis, the knowledge—1. of the species of bodies which dyeing processes bring into contact; 2. of the circumstances in which these species act; 3. of the phenomena which appear during their action; and 4. of the properties of the coloured combinations which are produced. These generalities may be specified under the ten following heads:—

1. The preparation of the stuffs to be dyed, whether fibres, yarn, or cloth; under the heads of ligneous matter, cotton, hemp, flax; and of the animal matters, silk and wool.

2. The mutual action of these stuffs, and simple bodies.

3. The mutual action of these stuffs, and acids.

4. The mutual action of these stuffs, and salifiable bases, as alumina, &c.

5. The mutual action of these stuffs, and salts.