A part of the bed at e, is made hollow, for the purpose of forming a steam box, into which steam from a boiler is introduced by a pipe with a stop-cock. This steam heats the bed of the stock, and greatly facilitates, as well as improves the process of cleansing and fulling the cloths.

The smoothness of the surface of the polished metal, of which the bed of the stock is constituted, is said to be very much preferable to the roughness of the surface of wood of which ordinary fulling stocks are made, as by these iron stocks less of the nap or felt of the cloth is removed, and its appearance when finished is very much superior to cloths fulled in ordinary stocks.

In the operation of fulling, the cloths are turned over on the bed, by the falling of the beaters, but this turning over of the cloths will depend in a great measure upon the form of the front or breast of the stock. In these improved stocks therefore, there is a contrivance by which the form of the front may be varied at pleasure, in order to suit cloths of different qualities; f, is a movable curved plate, constituting the front of the stock; its lower part is a cylindrical rod, extending along the entire width of the bed, and being fitted into a recess, forms a hinge joint upon which the curved plate moves; g, is a rod attached to the back of the curved plate f, with a screw thread upon it; this rod passes through a nut h, and by turning this nut, the rod is moved backward or forward, and consequently, the position of the curved plate altered.

The nut h, is a wheel with teeth, taking into two other similar toothed wheels, one on each side of it, which are likewise the nuts of similar rods jointed to the back of the curved plate f; by turning the central wheel, therefore, which may be done by a winch, the other two wheels are turned also, and the curved plate moved backward or forward. At the upper part of the plate there are pins passing through curved slots, which act as guides when the plate is moved.

The patentees state in conclusion, that steam has been employed before for heating cloths while fulling them, they therefore do not exclusively claim its use, except in the particular way described; the advantages arising from the construction of iron stocks, with polished surfaces in place of wooden ones, together with the movable curved plates described, are in their opinion “sufficiently important to constitute a patent right.”

FULMINATES, or fulminating powders. Of these explosive compounds, there are several species; such as fulminating gold, mercury, platinum, silver; besides the old fusible mixture of nitre, sulphur, and potash. The only kind at all interesting in a manufacturing point of view is the fulminate of mercury, now so extensively used as a priming to the caps of percussion locks. Having published a paper in the Journal of the Royal Institution for 1831, upon gunpowder (see [Gunpowder]), the result of an elaborate suite of experiments, I was soon afterwards requested by the Hon. the Board of Ordnance to make such researches as would enable me to answer, in a satisfactory practical manner, a series of questions upon fulminating powders, subservient to the future introduction of percussion musquets into the British army. The following is a verbatim copy of my report upon the subject:—

To the Secretary of the Board of Ordnance.

“Sir,—I have the honour of informing you, for the instruction of the Honourable the Master General and the Board of Ordnance, that the researches on fulminating mercury, which I undertook by their desire, have been brought to a satisfactory conclusion, after a numerous, diversified, and somewhat hazardous series of experiments. The following are the questions submitted to me, with their respective answers:—

Question 1. What proportions of mercury, with nitric acid and alcohol of certain strengths, will yield the greatest quantity of pure fulminate of mercury?

Answer. One hundred parts, by weight, of mercury, must be dissolved with a gentle heat, in 1000 parts (also by weight) of nitric acid, spec. gr. 1·4; and this solution, at the temperature of about 130° Fahr. must be poured into 830 parts by weight of alcohol, spec. gr. 0·830.—Note. 830 parts of such alcohol, by weight, constitute 1000 by measure; and 1000 parts of such nitric acid, by weight, constitute 740 by measure. Hence, in round numbers, one ounce weight of quicksilver must be dissolved in 712 oz. measures of the above designated nitric acid, and the resulting solution must be poured into 10 oz. measures of the said alcohol.