Every large gasometer must be strengthened interiorly with cross iron rods, to stiffen both its top and bottom. The top is supported by rods stretching obliquely down to the sides, and to the under edge an iron ring is attached, consisting of curved cast-iron bars bolted together; with which the oblique rods are connected by perpendicular ones. Other vertical rods stretch directly from the top to the bottom edge. Upon the periphery of the top, at the end of the rods, several rings are made fast, to which the gas-holder is suspended, by means of a common chain which runs over a pulley at the centre. Upon the other end of the chain there is a counterpoise, which takes off the greater part of the weight of the gas-holder, leaving only so much as is requisite for the expulsion of the gas. The inner and outer surfaces of the gas-holder should be a few times rubbed over with hot tar, at a few days’ interval between each application. The pulley must be made fast to a strong frame.

If the water cistern be formed with masonry, the suspension of the gas-holder may be made in the following way. A A, [fig. 489.], is a hollow cylinder of cast iron, standing up through the middle of the gasometer, and which is provided at either end with another small hollow cylinder G, open at both ends and passing through the top, with its axis placed in the axis of the gas-holder. In the hollow cylinder G, the counterweight moves up and down, with its chain passing over the three pulleys B, B, B, as shown in [fig. 489.] E F are the gas pipes made fast to a vertical iron rod. Should the gasometer be made to work without a counterweight, as we shall presently see, the central cylinder A A, serves as a vertical guide.

In proportion as the gas-holder sinks in the water of the cistern, it loses so much of its weight, as is equal to the weight of the water displaced by the sides of the sinking vessel; so that the gas-holder when entirely immersed, exercises the least pressure upon the gas, and when entirely out of the water, it exercises the greatest pressure. In order to counteract this inequality of pressure, which would occasion an unequal velocity in the efflux of the gas, and of course an unequal intensity of light in its flame, the weight of the chain upon which the gas-holder hangs is so adjusted as to be equal, throughout the length of its motion, to one half of the weight which the gas-holder loses by immersion. In this case, the weight which it loses by sinking into the water, is replaced by the portion of the chain which passing the pulley, and hanging over, balances so much of the chain upon the side of the counterweight; and the weight which it gains by rising out of the water, is counterpoised by the links of the chain which passing over the pulley, add to the amount of the counterweight. The pressure which the gas-holder exercises upon the gas, or that with which it forces it through the first main pipe, is usually so regulated as to sustain a column of from one to two inches of water; so that the water will stand in the cistern from one to two inches higher within, than without the gas-holder. The following computation will place these particulars in a clear light.

Let the semi-diameter of the gas-holder, equal to the vertical extent of its motion into and out of the water, = x; let the weight of a foot square of the side of the gas-holder, including that of the strengthening bars and ring, which remain plunged under the water, be = p; then

1. the weight of the gas-holder in its highest position = 3 p π x2;

2. the weight of the sides of the gas-holder which play in the water = 2 p π x2;

3. the cubic contents of the immersed portion of the gas-holder = 2 p π x2400;