Mr. Tait, of Mile-End Road, the inventor, has, we believe, been for some years connected with gas establishments, and is therefore fully aware of the practical defects or advantages of the different constructions of gasometers now in use. [Fig. 490.] is a section of Mr. Tait’s improved contrivance; a a is the tank, occupied with water, b b two iron columns, with pulley-wheels on the top, c c, chains attached to a ring of iron, d d, extending round the gasometer, which chains pass over the pulley-wheels, and are loaded at their extremities, for the purpose of balancing the weight of the materials of which the gasometer is composed.

The gasometer is formed by 2 or 3 cylinders, sliding one within the other, like the tubes of a telescope; e, e, e, is the first or outer cylinder, closed at the top, and having the ring of iron d, passing round it, by which the whole is suspended; f f, is the second cylinder, sliding freely within the first, and there may be a third and fourth within these if necessary.

When there is no gas in the apparatus, all the cylinders are slidden down, and remain one within the other immersed in the tank of water; but when the gas rises through the water pressing against the top of the gasometer, its buoyancy causes the cylinder e to ascend. Round the lower edge of this cylinder a groove is formed by the turning in of the plate of iron, and as it rises, the edge takes hold of the top rim of the cylinder f, which is overlapped for that purpose. The groove at the bottom of the cylinder fills itself with water as it ascends, and by the rim of the second cylinder falling into it, an air-tight hydraulic joint is produced.

Thus, several cylinders may be adapted to act in a small tank of water, by sliding one within the other, with lapped edges forming hydraulic joints, and by supporting the apparatus in the way shown, the centre of gravity will always be below the points of suspension. A gasometer may be made upon this plan of any diameter, as there will be no need of frame work, or a bridge to support it; and the increasing weight of the apparatus, as the cylinders are raised one after the other, may be counterpoised by loading the ends of the chains c c.

The water in the gasometer need not be renewed; but merely so much of it as evaporates or leaks out, is to be replaced. Indeed the surface of the water in the cistern gets covered with a stratum of coal oil, a few inches deep, which prevents its evaporation, and allows the gas to be saturated with this volatile substance, so as to increase its illuminating powers.

The gasometer may be separated from the purifier by an intermediate vessel, such as is represented [fig. 491.], with which the two gas pipes are connected. A is the cylindrical vessel of cast iron, a, the end of the gas pipe which comes from the purifier, immersed a few inches deep into the liquid with which the vessel is about two-thirds filled; b is the gas-pipe which leads into the gasometer, c is a perpendicular tube, placed over the bottom of the vessel, and reaching to within one-third of the top, through which the liquid is introduced into the vessel, and through which it escapes when it overflows the level d. In this tube the liquid stands towards the inner level higher, in proportion to the pressure of the gas in the gasometer. The fluid which is condensed in the gas pipe, b, and in its prolongation from the gasometer, runs off into the vessel A; and therefore the latter must be laid so low that the said tube may have the requisite declivity. A straight stop-cock may also be attached to the side over the bottom, to draw off any sediment.

II. Application of Light-Gas.

1. Distribution of the pipes.—The pressure by which the motion of the gas is maintained in the pipes, corresponds to a certain height of water in the cistern of the gasometer. From the magnitude of this pressure, and the quantity of gas which in a given time, as an hour, must be transmitted through a certain length of pipes, depends the width or the diameter that they should have, in order that the motion may not be retarded by the friction which the gas, like all other fluids, experiences in tubes, and thereby the gas might be prevented from issuing with the velocity required for the jets of flame. The velocity of the gas in the main pipe increases in the ratio of the square root of the pressing column of water upon the gasometer, and therefore by increasing this pressure, the gas may be forced more rapidly along the remoter and smaller ramifications of the pipes. Thus it happens, however, that the gas will be discharged from the orifices near the gasometer, with superfluous velocity. It is therefore advisable to lay the pipes in such a manner, that in every point of their length, the velocity of discharge may be nearly equal. This may be nearly effected as follows;—