By subsequent experiments confirmatory of the above, it has been further found that the willow presents the same advantages as the poplar, and that several shrubs, such as the hazel-nut, the spindle-tree, the dogberry, the elder-tree, the common sallow, and some others, may be as advantageously employed. But whichever wood be used, we should always cut it when full of sap, and never after it is dead; we should choose branches not more than five or six years old, and strip them carefully, because the old branches and the bark contain a larger proportion of earthy constituents. The branches ought not to exceed three-quarters of an inch in thickness, and the larger ones should be divided lengthwise into four, so that their pith may be readily burned away.

Wood is commonly carbonized in this country into gunpowder-charcoal in cast-iron cylinders, with their axes laid horizontally, and built in brick-work, so that the flame of a furnace may circulate round them. One end of the cylinder is furnished with a door, for the introduction of the wood and the removal of the charcoal; the other end terminates in a pipe, connected with a worm-tub for condensing the pyrolignous acid, and giving vent to the carburetted hydrogen gases that are disengaged. Towards the end of the operation, the connexion of the cylinder with the pyrolignous acid cistern ought to be cut off, and a very free egress opened for the volatile matter, otherwise the charcoal is apt to get coated with a fuliginous varnish, and to be even penetrated with condensable matter, which materially injure its qualities.

In France, the wood is carbonized for the gunpowder works either in oblong vaulted ovens, or in pits, lined with brick-work or cylinders of strong sheet-iron. In either case, the heat is derived from the imperfect combustion of the wood itself to be charred. In general, the product in charcoal by the latter method is from 16 to 17 parts by weight from 100 of wood. The pit-process is supposed to afford a more productive return, and a better article; since the body of wood is much greater, and the fuliginous vapours are allowed a freer escape. The surface of a good charcoal should be smooth, but not glistening. See [Charcoal].

The charcoal is considered by the scientific manufacturers to be the ingredient most influential, by its fluctuating qualities, upon the composition of gunpowder; and, therefore, it ought always to be prepared under the vigilant and skilful eye of the director of the powder establishment. If it has been kept for some time, or quenched at first with water, it is unsuitable for the present purpose. Charcoal extinguished in a close vessel by exclusion of air, and afterwards exposed to the atmosphere, absorbs only from three to four per cent. of moisture, while red-hot charcoal quenched with water may lose by drying twenty-nine per cent. When the latter sort of charcoal is used for gunpowder, a deduction of weight must be made for the water present. But charcoal which has remained long impregnated with moisture, constitutes a most detrimental ingredient of gunpowder.

4. On Mixing the Constituents and forming the Powder.

The three ingredients thus prepared are ready for manufacturing into gunpowder. They are, 1. Separately ground to a fine powder, which is passed through sorted silk sieves or bolting machines; 2. They are mixed together in the proper proportions, which we shall afterwards discuss; 3. The composition is then sent to the gunpowder mill, which consists of two edge-stones of a calcareous kind, turning by means of a horizontal shaft, on a bed-stone of the same nature; incapable of affording sparks by collision with steel, as sand-stones would do. On this bed-stone the composition is spread, and moistened with as small a quantity of water as will, in conjunction with the weight of the revolving stones, bring it into a proper body of cake, but by no means into a pasty state. The line of contact of the rolling edge-stone is constantly preceded by a hard copper scraper, which goes round with the wheel, regularly collecting the caking mass, and bringing it into the track of the stone. From 50 to 60 pounds of cake are usually worked at one operation, under each millstone. When the mass has been thoroughly kneaded and incorporated, it is sent to the corning-house, where a separate mill is employed to form the cake into grains or corns. Here it is first pressed into a hard firm mass, then broken into small lumps; after which the corning process is performed, by placing these lumps in sieves, on each of which is laid a disc or flat cake of lignum vitæ. The sieves are made of parchment skins, or of copper, perforated with a multitude of round holes. Several such sieves are fixed in a frame, which, by proper machinery, has such a motion given to it as to make the lignum vitæ runner in each sieve move about with considerable velocity, so as to break down the lumps of the cake, and force its substance through the holes, in grains of certain sizes. These granular particles are afterwards separated from the finer dust by proper sieves and reels.

The corned powder must now be hardened, and its rougher angles removed, by causing it to revolve in a close reel or cask turning rapidly round its axis. This vessel resembles somewhat a barrel-churn, and is frequently furnished inside with square bars parallel to its axis, to aid the polish by attrition.

The gunpowder is finally dried, which is now done generally with a steam heat, or in some places by transmitting a current of air, previously heated in another chamber, over canvas shelves, covered with the damp grains.

5. On the proportion of the Constituents.

A very extensive suite of experiments, to determine the proportions of the constituents for producing the best gunpowder, was made at the Essonne works, by a commission of French chemists and artillerists, in 1794.