This is best explained by the view in [fig. 550.] A single thread is formed into a number of loops or waves, by arranging it over a number of parallel needles, as shewn at R: these are retained or kept in the form of loops or waves, by being drawn or looped through similar loops or waves formed by the thread of the preceding course of the work, S. The fabric thus formed by the union of a number of loops is easily unravelled, because the stability of the whole piece depends upon the ultimate fastening of the first end of the thread; and if this is undone, the loops formed by that end will open, and release the subsequent loops one at a time, until the whole is unravelled, and drawn out into the single thread from which it was made. In the same manner, if a thread in a stocking piece fails, or breaks at any part, or drops a stitch, as it is called, it immediately produces a hole, and the extension of the rest can only be prevented by fastening the end. It should be observed that there are many different fabrics of stocking-stitch for various kinds of ornamental hosiery, and as each requires a different kind of frame or machine to produce it, we should greatly exceed our limits to enter into a detailed description of them all. That species which we have represented in [fig. 550.] is the common stocking-stitch used for plain hosiery, and is formed by the machine called the common stocking-frame, which is the groundwork of all the others. The operation, as we see, consists in drawing the loop of a thread successively through a series of other loops, so long as the work is continued, as is very plainly shown for one stitch in [fig. 551.]
There is a great variety of different frames in use for producing various ornamental kinds of hosiery. The first, which forms the foundation of the whole, is that for knitting plain hosiery, or the common stocking-frame.
Of this valuable machine, the invention of Mr. Lee of Cambridge, a side elevation is given in [fig. 552.], with the essential parts. The framing is supported by four upright posts, generally of oak, ash, or other hard wood. Two of these posts appear at A A, and the connecting cross rails are at C C. At B is a small additional piece of framing, which supports the hosier’s seat. The iron-work of the machine is bolted or screwed to the upper rails of the frame-work, and consists of two parts. The first rests upon a sole of polished iron, which appears at D, and to which a great part of the machinery is attached. The other part, which is generally called the carriage, runs upon the iron sole at D, and is supported by four small wheels, or trucks, as they are called by the workmen. At the upper part of the back standard of iron are joints, one of which appears at Q; and to these is fitted a frame, one side of which is seen extending to H. By means of these joints, the end at H may be depressed by the hosier’s hand, and it returns, when relieved, by the operation of a strong spring of tempered steel, acting between a cross bar in the frame, and another below. The action of this spring is very apparent in [fig. 553.] In the front of the frame, immediately opposite to where the hosier sits, are placed the needles which form the loops. These needles, or rather hooks, are more or less numerous, according to the coarseness or fineness of the stocking; and this, although unavoidable, proves a very considerable abatement of the value of a stocking-frame. In almost every other machine (for example those employed in spinning or weaving), it is easy to adapt any one either to work coarser or finer work, as it may be wanted. But in the manufacture of hosiery, a frame once finished, is limited for ever in its operation to the same quality of work, with this exception, that by changing the stuff, the work may be made a little more dense or flimsy; but no alteration in the size or quantity of loops can take place. Hence where the manufacture is extensively prosecuted, many frames may be thrown idle by every vicissitude of demand; and where a poor mechanic does purchase his own frame, he is for ever limited to the same kind of work. The gauge, as it is called, of a stocking-frame is regulated by the number of loops contained in three inches of breadth, and varies very much; the coarsest frames in common use being about what are termed Fourteens, and the finest employed in great extent about Forties. The needles are of iron wire, the manufacture of which is very simple; but long practice in the art is found necessary before a needle-maker acquires the dexterity which will enable him both to execute his work well, and in sufficient quantity to render his labour productive.
The process of making the needles is as follows:—Good sound iron wire, of a proper fineness, is to be selected; that which is liable to split or splinter, either in filing, punching, or bending, being totally unfit for the purpose. The wire is first to be cut into proper lengths, according to the fineness of the frame for which the needles are designed, coarse needles being considerably longer than fine ones. When a sufficient number (generally some thousands) have been cut, the wire must be softened as much as possible. This is done by laying them in rows in a flat iron box, about an inch deep, with a close cover; the box being filled with charcoal between the strata of wires. This box, being placed upon a moderate fire, is gradually heated until both the wires and charcoal have received a moderate red heat, because, were the heat increased to what smiths term the white heat, the wire would be rendered totally unfit for the subsequent processes which it has to undergo, both in finishing and working. When the box has been sufficiently heated, it may be taken from the fire, and placed among hot ashes, until both ashes and box have gradually cooled; for the slower the wires cool, the softer and easier wrought they will be. When perfectly cool, the next process is to punch a longitudinal groove in the stem of every needle, which receives the point or barb, when depressed. This is done by means of a small engine worked by the power of a screw and lever. The construction of these engines is various; but a profile elevation of one of the most simple and commonly used will be found in [fig. 553.] It consists of two very strong pieces of malleable iron, represented at A and C, and these two pieces are connected by a strong well-fitted joint at B. The lower piece, or sole of the engine at C, is screwed down by bolts to a strong board or table, and the upper piece A will then rise or sink at pleasure, upon the joint B. In order that A may be very steady in rising and sinking, which is indispensable to its correct operation, a strong bridle of iron, which is shewn in section E, is added to confine it, and direct its motion. In the upper part of this bridle is a female screw, through which the forcing screw passes, which is turned by the handle or lever D. To the sole of the engine C is fixed a bolster of tempered steel, with a small groove to receive the wire, which is to be punched; and in the upper or moving part A, is a sharp chisel, which descends exactly into the groove, when A is depressed by the screw. These are represented at F, and above H. At G is a strong spring, which forces up the chisel when the pressure of the screw is removed. The appearance of the groove, when the punching is finished, will be rendered familiar by inspecting [fig. 554.], p. 651. When the punching is finished, the wires are to be brought to a fine smooth point by filing and burnishing, the latter of which should be very completely done, as, besides polishing the wire, it tends greatly to restore that spring and elasticity which had been removed by the previous operation of softening. The wire is next to be bent, in order to form the hook or barb; and this is done with a small piece of tin plate bent double, which receives the point of the wire, and by its breadth regulates the length of the barb. The stem of the needle is now flattened with a small hammer, to prevent it from turning in the tin socket in which it is afterwards to be cast; and the point of the barb being a little curved by a pair of small plyers, the needle is completed.