14. Sulphate of iron, native green vitriol.—This is formed by the oxygenation of sulphuret of iron, and is unimportant in a metallurgic point of view.

15. Chromate of iron.—For the treatment and use of this ore, see [Chrome].

16. Arseniate of iron, Wurfelerz.

17. Muriate of iron.

18. Oxalate of iron; Humboldtite, found by M. Breithaupt in the lignite of Kolaw. It consists of protoxide of iron, 53·86; oxalic acid, 46·14; in 100.

19. Titanate of iron, consists of protoxide and peroxide of iron, 86; titanic acid, 8; oxide of manganese, 2; gangue, 1 = 97. See [Black Oxide of iron].

Of the assay of iron-ores by fusion.—In the assays by the dry way, the object is to separate exactly all the iron which the ore may contain, with the view of comparing the result with the product of smelting on the great scale. In order to succeed in this operation, we must deoxidize the iron, and produce at the same time such a temperature as will melt the metal and the earths associated with it in the ore, and obtain the former in a dense button at the bottom of a crucible, and the latter in a lighter glass or slag, above it. Sometimes the gangue of the ores, consisting mostly of a single earth, as quartz, alumina, or lime, is of itself very refractory, and hence some flux must be added to bring about the fusion. The substance most commonly employed for this purpose is borax; but ordinary flint glass may be substituted for it. Sometimes, also, instead of adding borax, which always succeeds, lime or clay may be added to the ore, according to the nature of its mineralizer; that is, lime for a clay iron-stone, and clay for a calcareous carbonate of iron; and both, when the gangue is siliceous, as occurs with the black oxide.

The ore, pulverized and passed through a silk sieve, is to be well mixed with the flux, and the mixture introduced into the smooth concavity made in the centre of a crucible lined with hard rammed damp charcoal dust. Were the mixture diffused through the charcoal, the reduced iron would be apt to remain scattered in little globules through the crucible, and no metallic button would be formed at its bottom. The mingled ore and flux must be covered with charcoal. The crucible thus filled must be shut with an earthen lid luted on with fire-clay; and it is then set on its base, either in an air furnace, or on the hearth of a forge urged with a smith’s bellows. The heat should be very slowly raised, not employing the bellows till three quarters of an hour have expired. In this way, the water of the damp charcoal (brasque) is allowed to exhale slowly, and the deoxidation is completed before the fusion begins; for by acting otherwise, the slags formed would dissolve some oxide of iron, and the assay would not indicate the whole of the iron to be obtained from the ore. At the end of the above period, the fire must be raised progressively to a white heat, at which pitch it must be maintained for a quarter of an hour, after which the crucible should be withdrawn. Whenever it has cooled, it is to be opened, the brasque must be carefully removed or put aside, and the button of cast-iron taken out and weighed. The brasque may sometimes contain a few globules, which must be collected by washing in water, or the application of a magnetic bar. The quantity of iron denotes, of course, the richness of the ore. These assays furnish always a gray cast-iron; and, therefore, the quality of the products can hardly be judged of, except by an experiment on the large scale. The temperature necessary for the success of an assay is about 150° of Wedgewood.

In the assays by the humid way, we may expect to find manganese, silica, alumina, lime, magnesia, and sometimes carbonic acid, associated with the iron. 100 grains of the ore in fine powder are to be digested with nitro-muriatic acid; which will leave only the silica with perhaps a very little alumina. If an effervescence takes place in the cold with a dilute acid, the loss of weight will indicate the amount of carbonic acid gas expelled. The muriatic solution contains the iron, the manganese, the lime, magnesia, and most of the alumina, with a little silica. On evaporating to dryness, and digesting in water, all the silica will remain in an insoluble state. If the solution somewhat acidulated be treated with oxalate of ammonia, the lime will fall down in the form of an oxalate; ammonia will now precipitate the alumina and the oxide of iron together, while the manganese and magnesia will continue dissolved in the state of triple salts (ammonia-muriates). The alumina may be separated from the ferric oxide by potash-lye. The manganese may be thrown down by hydrosulphuret of potash; and, finally, the magnesia may be precipitated by carbonate of soda. 100 parts of the red oxide of iron contain 69·34 of metal, and 30·66 of oxygen.

If phosphorus be present in the ore, the nitro-muriatic solution being rendered nearly neutral, will afford with muriate of lime a precipitate of phosphate of lime, soluble in an excess of muriatic acid.