No. 2. Black cast-iron, has a somewhat lighter shade than the preceding, and may therefore on comparison be called blackish-gray. It presents less large granulations than No. 1.; is tenacious, easily turned, filed, and polished; excellent for casting when it approaches to No. 1., and for the manufacture of bar iron when it has on the contrary a shade somewhat lighter. If repeatedly melted, it passes into the next quality, or
No. 3. White cast-iron; this is brittle, and indicates always some derangement in the working of the furnace; it flows imperfectly, and darts out in casting, abundance of brilliant white scintillations; it fixes very quickly; and on cooling, exhibits on its surface irregular asperities, which make it extremely rough. It is easily broken, and presents a lamellar and radiated fracture; and is so hard that tempered steel cannot act upon it. It is cast only into weights, bullets or bombs, but never into pieces of machinery. When exposed to the refinery processes, it affords a bad bar iron. It is owing probably to the different nature of the cast-iron obtained in different counties in England, that Staffordshire and Shropshire furnish the greater part of the great iron castings, while Wales manufactures almost exclusively malleable iron. The lower price of coals in Wales is perhaps the cause to a certain extent of this difference in the results of these two iron districts. It will be interesting at any rate, to describe separately the processes employed in Staffordshire and Wales.
The blast furnaces of Staffordshire, in the neighbourhood of Dudley, Bilston, and Wednesbury, are constructed almost wholly of bricks. Their outer form is frequently a cone, often also a pyramid with a square base. They are bound about with a great many iron hoops, or with iron bars placed at different heights. This powerful armour allows the furnaces to be built much less massively than they formerly were; and admits of lighter and more elegant external forms. They are seldom insulated; but are usually associated to the number of two or three in the same line. A narrow passage is left between them, which leads to the lateral openings where the tuyères are placed. At the front of the furnace, a large shed is always raised. The roofs of these sheds present in general circular profiles, and being made of cast or bar iron, they display a remarkable lightness of construction. The cast-iron columns likewise, which support the joists and girders, give additional elegance.
In the Dudley field, the furnaces are almost always in the middle of the plain, and an inclined rail-way must be formed to reach their platform. These inclined planes, composed of beams or rails placed alongside of each other, and sustained by props and cross-bars, as indicated in [fig. 582.], are set up mostly against the posterior face of the furnace. Two chains or ropes, passing over the drums of gins, moved by a steam engine (commonly the same that drives the bellows), draw up the waggons of wood or sheet iron a a, which contain the various materials for supplying the furnace. To facilitate this service, the platform round the furnace is sometimes enlarged behind by a floor; while a balustrade, which opens when the waggons arrive at the platform, prevents accidents. This projection is occasionally covered by a roof. For a furnace of the largest size, the force expended by this lifting apparatus, is not more than a two-horse power.
[Fig. 582.] is a vertical section through the furnace from front to rear, or at right angles to the line of the lateral tuyères. The erection of a pair of blast furnaces, of 40 feet high each, costs, in the Dudley district, 1800 pounds sterling; and requires for building each, 160,000 common bricks for the outside work, 3900 fire-bricks for the lining or shirt of the furnace, and 825 for the boshes. The dimensions of the fire-bricks are various; 5 kinds are employed for the lining, and 9 kinds for the boshes. They are all 6 inches thick, and are curved to suit the voussoirs.
The number of charges given in 12 hours is different in different furnaces; being sometimes 20, 25, and even so high as 40; but 30 is a fair average. Each charge is composed of from 5 to 6 cwt. of coak, (or now of 3 to 4 cwt. of coal with the hot blast); 3, 4, and sometimes 6 cwt. of the roasted mine, according to its richness and the quality of cast iron wanted; the limestone flux is usually one-third of the weight of the roasted iron stone. There are 2 casts in 24 hours; one at 6 in the morning, and another at 6 in the evening.
The height of the blast furnaces is very variable; some being only 36 feet high including the chimney, whilst others have an elevation of 60 feet. These extreme limits are very rare: so that the greater part of the furnaces are from 45 to 50 feet high. They are all terminated by a cylindrical chimney of from 8 to 12 feet long; being about one-fifth of the total height of the furnace. The inside diameter of this chimney is the same as that of the throat or mouth; and varies from 4 to 6 feet. The chimney is frequently formed of a single course of bricks, and acquires solidity from its hoops of iron, so thickly placed that one half of the surface is often covered with them. At its lower end, the mouth presents one or two rectangular openings, through which the charge is given. It is built on a basement circle of cast-iron, which forms the circumference of the throat; and a sloping plate of cast-iron b is so placed as to make the materials slide over into the furnace, as shown in the [figure].
The inside of the blast furnaces of Staffordshire is most frequently of a circular form, except the hearth and working area. The inner space is divided into four portions, different in their forms, and the functions which they fulfil in the smelting of the ore.