At the establishment of Cyfartha, for blowing seven smelting furnaces, and the seven corresponding fineries, three steam engines are employed, one of 90 horse-power, another of 80, and a third of 40; which constitutes in the whole, a force of 210 horses, or 26 horses and 15 per furnace, supposing the fineries to consume one-eighth of the blast. In the whole of the works of Messrs. Crawshay, the proprietors of Cyfartha, the power of about 350 horses is expended in blowing 12 smelting furnaces, and their subordinate fineries; which gives from 25 to 26 horses for each, allowing as before one-eighth for the fineries. As these furnaces produce each about 60 tons of cast iron weekly, we find that a horse power corresponds to 2 tons and a tenth in that time. Each of the furnaces consumes about 3567 cubic feet of air per minute. These works have been greatly increased of late years.

The following analyses of the English coal ironstones have been made by M. Berthier, at the school of mines in Paris.

Rich Welsh ore.Poor Welsh ore.Rich ore of Dudley,
or gubbin.
Loss by ignition30·0027·0031·00
Insoluble residuum8·4022·037·66
Lime0·06·002·66
Peroxide of iron60·0042·6658·33
On calculating the quantities of carbonate of iron, and metallic iron, to which the
above peroxide corresponds, we have:—
Carbonate of iron88·7765·0985·20
Metallic iron42·1531·3840·45

The mean richness of the ores of carbonate of iron of these coal basins, is not far from 33 per cent. About 28 per cent. is dissipated on an average, in the roasting of the ores.

Every ferruginous clay-stone is regarded as an iron ore, when it contains more than 20 per cent. of metal; and it is paid for according to its quality, being on an average at 12 shillings per ton in Staffordshire. The gubbin however fetches so high a price as 16 or 17 shillings. The ore must be roasted before it is fit for the blast furnace, a process carried on in the open air. A heap of ore mingled with small coal (if necessary) is piled up over a stratum of larger pieces of coal; and this heap may be 6 or 7 feet high, by 15 or 20 broad. The fire is applied at the windward end, and after it has burned a certain way, the heap is prolonged at the other extremity, as far as the nature of the ground or convenience of the work requires. The quantity of coal requisite for roasting the ore varies from one to four hundred weight per ton, according to the proportion of bituminous matter associated with the iron-stone. The ore loses in this operation from 25 to 30 per cent. of its weight. Three and a quarter tons of crude ore, or two and a quarter tons of roasted ore are required to produce a ton of cast iron; that is to say, the crude material yields on an average 30·7 per cent., and the roasted ore 44·4 of pig metal. In most smelting works in Staffordshire, about equal weights of the rich ore in round nodules called gubbin, and the poorer ore in cakes called blue flat, are employed together in their roasted state; but the proportions are varied, in order to have an uniform mixture, capable of yielding from 30 to 33 per cent. of metal.

The transition or carboniferous limestone of Dudley is used as the flux; it is compact and contains little clay. The bulk of the flux is made nearly equal to that of the ore. To treat two tons and a quarter of roasted ore, which furnish one ton of pig iron, 19 hundred weight of limestone are employed; constituting nearly 1 of limestone for 3 of unroasted ore. The limestone costs 6 shillings the ton.

Carbonized pitcoal or coke was, till within these few years, the sole combustible used in the blast furnaces of Staffordshire.

The coal is distributed in circular heaps, about 5 feet diameter, by 4 feet high; and the middle is occupied by a low brick chimney, piled with loose bricks, so open as to leave interstices between them, especially near the ground. The larger lumps of coal are arranged round this chimney, and the smaller towards the circumference of the heap. When every thing is adjusted, a kindling of coals is introduced into the bottom of the brick chimney; and to render the combustion slow, the whole is covered over with a coat of coal dross, the chimney being loosely closed with a slab of any kind. Openings are occasionally made in the crust and afterwards shut up, to quicken and retard the ignition at pleasure, during its continuance of 24 hours. Whenever the carbonization has reached the proper point for forming good coke, the covering of coal dross is removed, and water is thrown on the heap to extinguish the combustion; a circumstance deemed useful to the quality of the coke. In this operation the Staffordshire coal loses the half of its weight, or two tons of coal produce one of coke.

As soon as the blast furnace gets into a regular heat, which happens about 15 days or three weeks after fires have been put in it, the working consists simply in charging it, at the opening in the throat, whenever there is a sufficient empty space; the only rule being to keep the furnace always full. The coke is measured in a basket, thirteen of which go to the ton. The ore and the flux (limestone) are brought forwards in wheelbarrows of sheet-iron. In 24 hours, there are thrown into a furnace such as [fig. 582.], 1413 tons of coke, 16 tons of roasted ore, and 634 tons of limestone; from which about 7 tons of pig iron are procured. This is run off every 12 hours; in some works the blast is suspended during the discharge. The metal intended to be converted into bar iron, or to be cast again into moulds, is run into small pigs 3 feet long, and 4 inches diameter; weighing each about 2 hundred weight and a half.

The disorders to which blast furnaces are liable, have a tendency always to produce white cast iron. The colour of the slag or scoriæ is the surest test of these derangements, as it indicates the quality of the products. If the furnace is yielding an iron proper for casting into moulds, the slag has an uniform vitrification, and is slightly translucid. When the dose of ore is increased in order to obtain a gray pig iron, fit for fabrication into bars, the slag is opaque, dull, and of a greenish-yellow tint, with blue enamelled zones. Lastly, when the furnace is producing a white metal, the slags are black, glassy, full of bubbles, and emit an odour of sulphuretted hydrogen. The scoriæ from a coke, are much more loaded with lime than those from a charcoal blast furnace. This excess of lime appears adapted to absorb and carry off the sulphur, which would otherwise injure the quality of the iron. The slags, when breathed on, emit an argillaceous odour.