3. The brake sieves appear to be preferable to the hand ones.
4. The system of washing used in Cumberland differs essentially from that of Brittany. The slime pits are constructed with much less care than in France and Germany. They never present, as in these countries, those long windings backwards and forwards, whence they have been called labyrinths; probably because the last deposits, which are washed with profit in France and Germany, could not be so in Cumberland. There is reason to believe, however, that the introduction of brake tables, (tables à secousses, see [Metallurgy]) would enable deposits to be saved, which at present run to waste in England.
5. From what we have now said about the system of washing, and the basins of deposit or settling cisterns, it may be inferred that the operation followed in Cumberland is more expeditious than that used in Brittany, but it furnishes less pure ores, and occasions more considerable waste; a fact sufficiently obvious, since the refuse stuff at Poullaouen is often resumed, and profitably subjected to a new preparation. We cannot however venture to blame this method, because in England, fuel being cheap, and labour dear, there may possibly be more advantage in smelting an ore somewhat impure, and in losing a little galena, than in multiplying the number of washing processes.
6. Lastly, the dolly tub ought to be adopted in all the establishments where the galena is mixed with much blende (sulphuret of zinc); for schlich (metallic slime) which appears very clean to the eye, gives off a considerable quantity of blende by means of the dolly tub. While the vane is rapidly whirled, the sludge is gradually let down into the revolving water, till the quantity is sufficiently great. Whenever the ore is thoroughly disseminated in the liquid, the dolly is withdrawn. The workmen then strike on the sides of the tub for a considerable time, with mallets or wooden billets, to make the slime fall fast to the bottom. The lighter portions, consisting almost entirely of refuse matter, fall only after the knocking has ceased; the water is now run away; then the very poor slime upon the top of the deposit is skimmed off; while the pure ore found at the bottom of the tub is lifted out, and laid on the bingstead. In this way the blende, which always accompanies galena in a greater or smaller quantity, is well separated.
Smelting of lead ores.—The lead ores of Derbyshire and the north of England were antiently smelted in very rude furnaces, or boles, urged by the natural force of the wind, and were therefore placed on the summits or western slopes of the highest hills. More recently these furnaces were replaced by blast hearths, resembling smith’s forges, but larger; and were blown by strong bellows, moved by men or water-wheels. The principal operation of smelting is at present always executed in Derbyshire in reverberatory furnaces, and at Alston Moor in furnaces similar to those known in France by the name of Scotch furnaces. Before entering into the detail of the founding processes, we shall give a description of the furnaces essential for both the smelting and accessory Operations.
1. The reverberatory furnace called cupola, now exclusively used in Derbyshire for the smelting of lead ores, was imported thither from Wales, about the year 1747, by a company of Quakers. The first establishment in this county was built at Kalstedge, in the district of Ashover.
In the works where the construction of these furnaces is most improved, they are interiorly 8 feet long by 6 wide in the middle, and two feet high at the centre. The fire, placed at one of the extremities, is separated from the body of the furnace by a body of masonry, called the fire-bridge, which is two feet thick, leaving only from 14 to 18 inches between its upper surface and the vault. From this, the highest point, the vault gradually sinks towards the further end, where it stands only 6 inches above the sole. At this extremity of the furnace, there are two openings separated by a triangular prism of fire-stone, which lead to a flue, a foot and a half wide, and 10 feet long, which is recurved towards the top, and runs into an upright chimney 55 feet high. The above flue is covered with stone slabs, carefully jointed with fire-clay, which may be removed when the deposit formed under them (which is apt to melt), requires to be cleaned out. One of the sides of the furnace is called the labourers’ side. It has a door for throwing coal upon the fire-grate, besides three small apertures each about 6 inches square. These are closed with movable plates of cast iron, which are taken off when the working requires a freer circulation of air, or for the stirring up of the materials upon the hearth. On the opposite side, called the working side, there are five apertures; namely, three equal and opposite to those just described, shutting in like manner with cast iron plates, and beneath them two other openings, one of which is for running out the lead, and another for the scoriæ. The ash pit is also on this side, covered with a little water, and so disposed as that the grate-bars may be easily cleared from the cinder slag.
The hearth of the furnace is composed of the reverberatory furnace slags, to which a proper shape has been given by beating them with a strong iron rake, before their entire solidification. On the labourers’ side, this hearth rises nearly to the surface of the three openings, and falls towards the working side, so as to be 18 inches below the middle aperture. In this point, the lowest of the furnace, there is a tap-hole, through which the lead is run off into a large iron boiler (lea-pan), placed in a recess left outside in the masonry. From that lowest point, the sole gradually rises in all directions, forming thus an inside basin, into which the lead runs down as it is smelted. At the usual level of the metal bath, there is on the working side, at the end furthest from the fire, an aperture for letting off the slag.
In the middle of the arched roof there is a small aperture, called the crown-hole, which is covered up during the working with a thick cast iron plate. Above this aperture a large wooden or iron hopper stands, leading beneath into an iron cylinder, through which the contents of the hopper may fall into the furnace when a trap or valve is opened.