Fig. 93, [94], [95.] show the plan of a third automaton. A horse which moves its feet in a natural way, and draws a carriage with two figures sitting in it. The man appears to drive the horse with a whip; the woman bends forwards from him in front. The four wheels of the carriage have no connection with the moving mechanism. In [fig. 95.], some parts are represented upon a larger scale. The wheel 1, in fig. 93. operates through the two carrier wheels upon the wheels marked 4 and 5. By means of the axis of these two wheels, the feet are set in motion. The left fore-foot, a, then the right hinder foot, move themselves backwards, and take hold of the ground with small tacks in their hoofs, while the two other legs are bent and raised, but no motion of the body takes place. The carriage, however, with which the horse is connected, advances upon its wheels. By studying the mechanism of the foot, a, and the parts connected with it, we can readily understand the principles of the movement. The axis of wheel 4 is crank-shaped, on both sides, where it has to operate directly on the fore feet; but for each foot, it is bent in an opposite direction, as is obvious in the front view [fig. 94.] This crank, or properly its part furthest from the axis, serves instead of the pin 16, in the swan, and moves like it in an oval spot, p, fig. 93. a two-armed lever, which gives motion through tooth-work, but not as in the swan, by means of a second pin. This wheel-work renders the motion smoother. The above lever has its fulcrum at n, fig. 93., about which it turns alternately, to the one and the other side, by virtue of the rotation of the wheel 4. The toothed arch, or the half-wheel on the under side, lays hold of a shorter lever, in a similar arch, upon the upper joint of the foot, which is moved forwards and backwards upon the pivot m. In virtue of the motions in the direction of the arrow, the foot a will move itself first obliquely backwards, without bending, and the body will thereby bend itself forwards. When the right hind foot makes the same motion, both the other feet are raised and bent. The joints of the foot at d and e are formed of hinges, which are so constructed that they can yield no farther than is necessary at every oblique position of the foot. With the continued rotation of the wheel 4, the lever turns itself about n, in an inverted direction inwards, and impels the uppermost foot-joint forwards, so that it forms an acute angle with the body in front. The foot is now twice bent upon its joints. This takes place by the traction of the chain t, which is led over rollers (as the drawing shows) to the foot, and is there fastened. As its upper end has its fixed point in the interior of the body, it is therefore drawn by the eccentric pin r standing in the vicinity of m, and thus bends the foot at the hinges. If there were space for it, a roller would answer better than a pin. By the recedure of the uppermost joint into the first position, the tension of the chain t ceases again of itself, while the pin r removes from it, and the foot is again extended in a straight line by the small springs operating upon its two under parts, which were previously bent stiffly by the chain. By the aid of the figures with this explanation, it will be apparent that all the fore feet have a similar construction, that the proper succession of motions will be effected through the toothed arcs, and the position of the cranks on the axis of the wheels 4 and 5, and hence the advance of the figure must follow. The wheel 6 puts the fly 7 in motion, by means of the small wheel marked 1; on the fixed points of the 4 chains, by means of a ratchet-wheel and a catch, the necessary tension will again be produced when the chains have been drawn out a little. There is sufficient room for a mechanism which could give motion to the head and ears, were it thought necessary.

The proper cause of the motions may now be explained. In [fig. 95.], a, is a wheel connected with the wound-up spring, by which the motion of the two human figures, and also, if desired, that of the horse may be effected. The axis of the wheel b carries a disc with pins, which operate upon the two-armed lever with its fulcrum e, and thus cause the bending of the upper part of one of the figures, which has a hinge at f. On the axis of that wheel there is a second disc c, for giving motion to the other figure; which, for the sake of clearness, is shown separate, although it should sit alongside of its fellow. On the upper end of the double-armed lever d, there is a cord whose other end is connected with the moving arm, in the situation i, and raises it whenever a pin in the disc presses the under part of the lever. A spring h brings the arm back into the original position, when a pin has passed from the lever, and has left it behind. The pins at c and d may be set at different distances from the middle of the disc, whereby the motions of the figures by every contact of another pin, are varied, and are therefore not so uniform, and consequently more natural.

For the connexion of both mechanisms, namely, the carriage with the horse, various arrangements may be adopted. Two separate traction springs should be employed; one at a, [fig. 95.], in the coach-seat; the other in the body of the horse. In the coach-seat at b, the fly with its pinion, as well as a ratchet-wheel, is necessary. By means of the shaft, the horse is placed in connexion with the waggon. It may, however, receive its motion from the spring in the carriage, in which case one spring will be sufficient. Upon the latter plan the following construction maybe adopted:—To the axis of b, [fig. 95.], a bevel wheel is to be attached, and from this the motion is to be transmitted to the bottom of the carriage with the help of a second bevel wheel s, connected with a third bevel wheel t. This again turns the wheel u, whose long axis v goes to the middle of the horse’s body, in an oblique direction, through the hollow shaft. This axis carries an endless screw 9, fig. 93., with very oblique threads, which works into the little wheel 8, corresponding to the wheel 1, through an opening in the side of the horse, and in this way sets the mechanism of the horse a-going. With this construction of [fig. 95.], a spring of considerable strength is necessary, or if the height of the carriage-seat does not afford sufficient room, its breadth will answer for placing two weaker springs alongside of each other upon a common barrel.

AXE. A tool much used by carpenters for cleaving, and roughly fashioning, blocks of wood. It is a flat iron wedge, with an oblong steel edge, parallel to which, in the short base, is a hole for receiving and holding fast the end of a strong wooden handle. In the cooper’s adze, the oblong edge is at right angles to the handle, and is slightly curved up, or inflected towards it.

AXLES, of carriages; for their latest improvements, see [Wheel Carriages].

AXUNGE. Hog’s lard; see [Fat] and [Oils].

AZOTIZED, said of certain vegetable substances, which, as containing azote, were supposed at one time to partake, in some measure, of the animal nature; most animal bodies being characterised by the presence of much azote in their composition. The vegetable products, indigo, cafeine, gluten, and many others, contain abundance of azote.

AZURE, the fine blue pigment, commonly called smalt, is a glass coloured with oxide of cobalt, and ground to an impalpable powder.