ORCINE, is the name of the colouring principle of the lichen dealbatus. The lichen dried and pulverized is to be exhausted by boiling alcohol. The solution filtered hot, lets fall in the cooling, crystalline flocks, which do not belong to the colouring matter. The supernatant alcohol is to be distilled off, the residuum is to be evaporated to the consistence of an extract, and triturated with water till this liquid will dissolve no more. The aqueous solution reduced to the consistence of syrup, and left to itself in a cool place, lets fall, at the end of a few days, long brown brittle needles, which are to be freed by pressure from the mother water, and dried. That water being treated with animal charcoal, filtered and evaporated, will yield a second crop of crystals. These are orcine. Its taste is sweet and nauseous; it melts readily in a retort into a transparent liquid, and distils without undergoing any change. It is soluble in water and alcohol. Nitric acid colours it blood-red; which colour afterwards disappears. Subacetate of lead precipitates it completely. Its conversion into the archil red is effected by the action of an alkali, in contact with the air. When dissolved, for example, in ammonia, and exposed to the atmosphere, it takes a dirty brown red hue; but when the orcine is exposed to air charged with vapours of ammonia, it assumes by degrees a fine violet colour. To obtain this result, the orcine in powder should be placed in a capsule, alongside of a saucer containing water of ammonia; and both should be covered by a large bell glass; whenever the orcine has acquired a dark brown cast, it must be withdrawn from under the bell, and the excess of ammonia be allowed to volatilize. As soon as the smell of ammonia is gone, the orcine is to be dissolved in water; and then a few drops of ammonia being poured into the brownish liquid, it assumes a magnificent reddish-violet colour. Acetic acid precipitates the red lake of lichen.

ORES (Mines, Fr.; Erze, Germ.); are the mineral bodies which contain so much metal as to be worth the smelting, or being reduced by fire to the metallic state. The substances naturally combined with metals, which mask their metallic characters, are chiefly oxygen, chlorine, sulphur, phosphorus, selenium, arsenic, water, and several acids, of which the carbonic is the most common. Some metals, as gold, silver, platinum, often occur in the metallic state, either alone, or combined with other metals, constituting what are called native alloys.

I have described in the article [Mine], the general structure of the great metallic repositories within the earth, as well as the most approved methods of bringing them to the surface; and in the article [Metallurgy], the various mechanical and chemical operations requisite to reduce the ores into pure metals. Under each particular metal, moreover, in its alphabetical place, will be found a systematic account of its most important ores.

Relatively to the theory of the smelting of ores, the following observations may be made. It is probable that the coaly matter employed in that process is not the immediate agent of their reduction; but the charcoal seems first of all to be transformed by the atmospherical oxygen into the oxide of carbon; which gaseous product then surrounds and penetrates the interior substance of the oxides, with the effect of decomposing them, and carrying off their oxygen. That this is the true mode of action, is evident from the well-known facts, that bars of iron, stratified with pounded charcoal, in the steel cementation-chest, most readily absorb the carbonaceous principle to their innermost centre, while their surfaces get blistered by the expansion of carburetted gases formed within; and that an intermixture of ores and charcoal is not always necessary to reduction, but merely an interstratification of the two, without intimate contact of the particles. In this case, the carbonic acid which is generated at the lower surfaces of contact of the strata, rising up through the first bed of ignited charcoal, becomes converted into carbonic oxide; and this gaseous matter, passing up through the next layer of ore, seizes its oxygen, reduces it to metal, and is itself thereby transformed once more into carbonic acid; and so on in continual alternation. It may be laid down, however, as a general rule, that the reduction is the more rapid and complete, the more intimate the mixture of the charcoal and the metallic oxide has been, because the formation of both the carbonic acid and carbonic oxide becomes thereby more easy and direct. Indeed the cementation of iron bars, into steel will not succeed, unless the charcoal be so porous as to contain, interspersed, enough of air to favour the commencement of its conversion into the gaseous oxide; thus acting like a ferment in brewing. Hence also finely pulverized charcoal does not answer well; unless a quantity of ground iron cinder or oxide of manganese be blended with it, to afford enough of oxygen to begin the generation of carbonic oxide gas; whereby the successive transformations into acid, and oxide, are put in train.

ORPIMENT (Eng. and Fr., Yellow sulphuret of arsenic; Operment, Rauschgelb, Germ.); occurs in indistinct crystalline particles, and sometimes in oblique rhomboidal prisms; but for the most part, in kidney and other imitative forms; it has a scaly and granular aspect; texture foliated, or radiated; fracture small granular, passing into conchoidal; splintery, opaque, shining, with a weak diamond lustre; lemon, orange, or honey yellow; sometimes green; specific gravity, 3·44 to 3·6. It is found in floetz rocks, in marl, clay sand-stone, along with realgar, lead-glance, pyrites, and blende, in many parts of the world. It volatilizes at the blowpipe. It is used as a pigment.

The finest specimens come from Persia, in brilliant yellow masses, of a lamellar texture, called golden orpiment.

Artificial orpiment is manufactured chiefly in Saxony, by subliming in cast-iron cucurbits, surmounted by conical cast-iron capitals, a mixture in due proportions of sulphur and arsenious acid (white arsenic). As thus obtained, it is in yellow compact opaque masses, of a glassy aspect; affording a powder of a pale yellow colour. Genuine orpiment is often adulterated with an ill-made compound; which is sold in this country by the preposterous name of king’s yellow. This fictitious substance is frequently nothing else than white arsenic combined with a little sulphur; and is quite soluble in water. It is therefore a deadly poison, and has been administered with criminal intentions and fatal effects. I had occasion, some years ago, to examine such a specimen of king’s yellow, with which a woman had killed her child. A proper insoluble sulphuret of arsenic, like the native or the Saxon, may be prepared by transmitting sulphuretted hydrogen gas through any arsenical solution. It consists of 38·09 sulphur, and 60·92 of metallic arsenic, and is not remarkably poisonous. The finest kinds of native orpiment are reserved for artists; the inferior are used for the indigo vat. They are all soluble in alkaline lyes, and in water of ammonia.

ORYCTNOGNOSY, is the name given by Werner to the knowledge of minerals; and is therefore synonymous with the English term Mineralogy.

OSTEOCOLLA, is the glue obtained from bones, by removing the earthy phosphates with muriatic acid, and dissolving the cartilaginous residuum in water at a temperature considerably above the boiling point, by means of a digester. It is a very indifferent article.

OSMIUM, is a metal discovered by Mr. Tennant in 1803, among the grains of native platinum. It occurs also associated with the ore of iridium. As it has not been applied to any use in the arts, I shall reserve any chemical observations that the subject may require for the article [Platinum].