[Fig. 843.] represents a part of a colliery laid out in four panels, according to the improved method. To render it as distinct as possible, the line of the boards is at right angles with the dip-head level, or level course of the coal. A is the engine-shaft, divided into three compartments, an engine-pit and two coal-pits, like [fig. 825.] One of the coal-pits is the down-cast, by which the atmospheric air is drawn down to ventilate the works; the other coal-pit is the up-cast shaft, at whose bottom the furnace for rarefying the air is placed. B C, is the dip-head level; A E, the rise or crop gallery; K, K, the panel walls; F, G, are two panels completed as to the first work; D, is a panel, with the rooms a, a, a, in regular progress to the rise; H, is a panel fully worked out, whence nearly all the coal has been extracted; the loss amounting in general to no more than a tenth, instead of a third, or even a half, by the old method. By this plan of Mr. Buddle’s, also, the pillars of a panel may be worked out at any time most suitable for the economy of the mining operation; whereas formerly, though the size of the pillars and general arrangement of the mine were made with the view of taking out ultimately a great proportion of the pillars, yet it frequently happened that, before the workings were pushed to the proposed extent, some part of the mine gave way, and produced a crush; but the most common misfortune was the pillars sinking into the pavement, and deranging the whole economy of the field. Indeed the crush or creep often overran the whole of the pillars, and was resisted only by the entire body of coal at the wall faces; so that the ventilation was entirely destroyed, the roads leading from the wall faces to the pit-bottom shut up and rendered useless, and the recovery of the colliery by means of new air-courses, new roads, and by opening up the wall faces or rooms, was attended with prodigious expense and danger. Even when the pillars stood well, the old method was attended with other very great inconveniences. If water broke out in any particular spot of the colliery, it was quite impossible to arrest its progress to the engine-pit; and if the ventilation was thereby obstructed, no idea could be formed where the cause might be found, there being instances of no less than 30 miles of air-courses in one colliery. And if from obstructed ventilation an explosion of the fire-damp occurred while many workmen were occupied along the extended wall faces, it was not possible to determine where the disaster had taken place; nor could the viewers and managers know where to bring relief to the forlorn and mutilated survivors.

In Mr. Buddle’s system all these evils are guarded against, as far as human science and foresight can go. He makes the pillars very large, and the rooms or boards narrow; the pillars being in general 12 yards broad, and 24 yards long; the boards 4 yards wide, and the walls or thirlings cut through the pillars from one board to another, only 5 feet wide, for the purpose of ventilation. In the figure, the rooms are represented as proceeding from the dip to the crop, and the panel walls act as barriers thrown round the area of the panel, to prevent the weight of the superincumbent strata from overrunning the adjoining panels. Again, when the pillars of a panel are to be worked, one range of pillars, as at I (in H), is first attacked; and as the workmen cut away the furthest pillars, columns of prop-wood are erected betwixt the pavement and the roof, within a few feet of each other (as shown by the dots), till an area of above 100 square yards is cleared of pillars, presenting a body of-strata perhaps 130 fathoms thick, suspended clear and without support, except at the line of the surrounding pillars. This operation is termed working the goaff. The only use of the prop-wood is to prevent the seam, which forms the ceiling over the workmen’s heads, from falling down and killing them by its splintery fragments. Experience has proved, that before proceeding to take away another set of pillars, it is necessary to allow the last-made goaff to fall. The workmen then begin to draw out the props, which is a most hazardous employment. They begin at the more remote props, and knock them down one after another, retreating quickly under the protection of the remaining props. Meanwhile the roof-stratum begins to break by the sides of the pillars, and falls down in immense pieces; while the workmen still persevere, boldly drawing and retreating till every prop is removed. Nay, should any props be so firmly fixed by the top pressure, that they will not give way to the blows of heavy mauls, they are cut through with axes; the workmen making a point of honour to leave not a single prop in the goaff. The miners next proceed to cut away the pillars nearest to the sides of the goaff, setting prop-wood, then drawing it, and retiring as before, until every panel is removed, excepting small portions of pillars which require to be left under dangerous stones to protect the retreat of the workmen. While this operation is going forward, and the goaff extending, the superincumbent strata being exposed without support over a large area, break progressively higher up; and when strong beds of sandstone are thus giving way, the noise of the rending rocks is very peculiar and terrific; at one time loud and sharp, at another hollow and deep.

As the pillars of the panels are taken away, the panel walls are also worked progressively backwards to the pit bottom; so that only a very small proportion of coal is eventually lost. This method is undoubtedly the best for working such coals as those of Newcastle, considering their great depth beneath the surface, their comparative softness, and the profusion of inflammable air. It is evident that the larger the pillars and panel walls are, in the first working, the greater will be the security of the miners, and the greater the certainty of taking out, in the second stage, the largest proportion of coal. This system may be applied to many of the British collieries; and it will produce a vast quantity of coals beyond the post and stall methods, so generally persisted in.

In thus tearing to pieces the massive rocks over his head, the miner displays a determined and cool intrepidity; but his ingenuity is no less to be admired in contriving modes of carrying currents of pure atmospheric air through every turning of his gloomy labyrinth, so as to sweep away the explosive spirit of the mine.

The fourth system of working coal, is called the long way, the long-wall, and the Shropshire method. The plan must at first have been extremely hazardous; though now it is so improved as to be reckoned as safe, if not safer, to the workmen, than the other methods, with rooms and pillars.

The object of the Shropshire system, is to begin at the pit-bottom pillars, and to cut away at once every inch of coal progressively forward, and to allow the whole superincumbent strata to crush down behind and over the heads of the workmen. This plan is pursued chiefly with coals that are thin, and is very seldom adopted when the seam is 7 feet thick; from 4 to 5 feet being reckoned the most favourable thickness for proceeding with comfort, amidst ordinary circumstances, as to roof, pavement, &c. When a pit is opened on a coal to be treated by this method, the position of the coals above the lowest seam sunk to, must first be considered; if the coal beds be contiguous, it will be proper to work the upper one first, and the rest in succession downwards; but if they are 8 fathoms or more apart, with strata of strong texture betwixt them, the working of the lower coals in the first place will do no injury to that of the upper coals, except breaking them, perhaps, a little. In many instances, indeed, by this operation on a lower coal, upper coals are rendered more easily worked.

When the operation is commenced by working on the Shropshire plan, the dip-head levels are driven in the usual manner, and very large bottom pillars are formed, as represented in [fig. 844.] Along the rise side of the dip-head level, chains of wall, or long pillars, are also made, from 8 to 10 yards in breadth, and only mined through occasionally, for the sake of ventilation, or of forming new roads. In other cases no pillars are left upon the rise side of the level; but, instead of them, buildings of stone are reared, 4 feet broad at the base, and 9 or 10 feet from the dip side of the level. Though the roads are made 9 feet wide at first, they are reduced to half that width after the full pressure of the strata is upon them. Whenever these points are secured, the operation of cutting away the whole body of the coal begins. The place where the coal is removed, is named the gobb or waste; and gobbin, or gobb-stuff, is stones or rubbish taken away from the coal, pavement, or roof, to fill up that excavation as much as possible, in order to prevent the crush of superincumbent strata from causing heavy falls, or following the workmen too fast in their descent. Coals mined in this manner work most easily according to the way in which the widest backs and cutters are; and therefore, in the Shropshire mode, the walls stand sometimes in one direction, and sometimes in another; the mine always turning out the best coals when the open backs and cutters face the workmen. As roads must be maintained through the crushed strata, the miners in the first place cut away about 15 feet of coal round the pit-bottom pillars, and along the upper sides of the dip-head chain walls; and then, at the distance of 9 or 10 feet, carry regular buildings of stone 3 feet broad, with props set flush with the faces of these, if necessary. As the miners advance, they erect small pillars of roof or pavement stone in regular lines with the wall face, and sometimes with props intermediate.

There are two principal modifications of the Shropshire plan. The first, or the original system, was to open out the wall round the pit-bottom; and, as the wall face extended, to set off main roads and branches, very like the branches of a tree. These roads were so distributed, that between the ends of any two branches there should be a distance of 30 or 40 yards, as might be most convenient. (see [fig. 844.]) Each space of coal betwixt the roads is called a wall; and one half of the coals produced from each wall is carried to the one road, and the other half to the other road. This is a great convenience when the roof is bad; and hence a distance of only 20 yards betwixt the roads is in many instances preferred. In [fig. 844.] A represents the shaft; B B, the wall-face; a, the dip-head level; b, the roads, from 20 to 40 yards asunder; c, the gobb or waste, with buildings along the sides of the roads; and d, the pillars.