The transport of coals from the wall-face to the bottom of the shaft, was greatly facilitated by the introduction of cast-iron railways, in place of wooden roads, first brought into practice by Mr. John Curr of Sheffield. The rails are called tram-rails, or plate-rails, consisting of a plate from 3 to 4 inches broad, with an edge at right angles to it about two inches and a half high. Each rail is from 3 to 4 feet long, and is fixed either to cross bearers of iron, called sleepers, or more usually to wooden bearers. In some collieries, the miners, after working out the coals, drag them along these railways to the pit bottom; but in others, two persons called trammers are employed to transport the coals; the one of whom, in front of the corve, draws with harness; and the other, called the patter, pushes behind. The instant each corve arrives, from the wall-face, at a central spot in the system of the railways, it is lifted from the tram by a crane placed there, and placed on a carriage called a rolley, which generally holds two corves. Whenever three or four rolleys are loaded, they are hooked together, and the rolley driver, with his horse, takes them to the bottom of the engine-shaft. The rolley horses have a peculiar kind of shafts, commonly made of iron, named limbers, the purpose of which is to prevent the carriage from overrunning them. One of these shafts is represented in [fig. 851.] The hole shown at a, passes over an iron peg or stud in front of the rolley, so that the horse may be quickly attached or disengaged. By these arrangements the work is carried on with surprising regularity and despatch.

The power of the engine for drawing the coals up the shaft, is made proportional to the depth of the pit and the quantity to be raised, the corves ascending at an average velocity of about 12 feet per second. So admirable is the modern arrangement of this operation, that the corves are transported from the wall-faces to the pit bottom, and moved up the shaft, as fast as the onsetters at the bottom, and the banksmen at the top, can hook the loaded and empty corves on and off the engine ropes. Thus 100 corves of coals have been raised every hour up a shaft 100 fathoms deep, constituting a lift of 27 tons per hour, or 324 tons in a day, or shift of 12 hours. Coals mined in large cubical masses cannot, however, be so rapidly raised as the smaller coal of the Newcastle district.

When coals have so great a rise from the pit bottom to the crop that horses cannot be used on the rolley ways, the corves descend along the tram-roads, by means of inclined-plane machines, which are moved either by vertical rope-barrels, or horizontal rope-sheaves. These inclined planes are frequently divided into successive stages, 200 or 300 yards long, at the end of each of which is an inclined-plane machine, whereby the coals are lowered from one level to another.

The wheels of the trams and rolleys vary in diameter from 8 to 16 inches, according to the thickness of the coal. In some, the axles not only revolve on their journals, but the wheels also revolve on their axles.

Various forms of machines have been employed for raising the coals out of the pits. The steam engine with fly-wheel and rope-barrels, is, however, now preferred in all considerable establishments. When of small power, they are usually constructed with a fly wheel, and short fly-wheel shaft, on which there is a small pinion working into the teeth of a large wheel, fixed upon the rope barrel. Thus the engine may move with great rapidity, while it imparts an equable slow motion to the corves ascending in the shaft. When the engines are of great power, however, they are directly connected with the rope-barrel; some of these being of such dimensions, that each revolution of the rope-barrel produces an elevation of 12 yards in the corve. A powerful brake is usually connected with the circumference of the fly-wheel or rope-barrel, whereby the brakeman, by applying his foot to the governing lever of the brake, and by shutting at the same time the steam valves with his hands, can arrest the corve, or pitch its arrival within a few inches of the required height of every delivery. An endless chain, suspended from the bottom to the top of the shaft, has, in a few pits of moderate depth, been worked by a steam engine, for raising corves in constant succession; but the practice has not been found hitherto applicable on the greater scale.

There is a kind of water engines for raising coals, strictly admissible only in level free pits, where the ascent of the loaded corve is produced by the descent of a cassoon filled with water. When the ascent and descent are through equal spaces, the rope barrels for the cassoon and the corves are of equal diameter; but when the point from which the coals have to be lifted is deeper than the point of discharge for the water into the dry level, the cassoon must be larger, and the rope barrel smaller; so that by the time the cassoon reaches to the half-depth, for example, the corve may have mounted through double the space. The cassoon is filled with water at the pit mouth, and is emptied by a self-acting valve whenever it gets to the bottom. The loaded corve is replaced by an empty one at the pit mouth, and its weight, with that of the descending rope, pull up the empty cassoon; the motions of the whole mechanism being regulated by a powerful brake.

Various plans have been devised to prevent collision between the ascending and descending corves, which sometimes pass each other with a joint velocity of 20 or 30 feet per second. One method is by dividing the pit from top to bottom, so that each corve moves in a separate compartment. Another mode was invented by Mr. Curr of Sheffield, in which wooden guides were attached from top to bottom of the pit; being spars of deal about 4 inches square, attached perpendicularly to the sides of the shaft, and to buntons in the middle of the pit. Betwixt these guides, friction-roller sliders are placed, attached to the gin-ropes, to which sliders the corves are suspended. In this way, the corves can be raised with great rapidity; but there is a considerable loss of time in banking the corve at the pit mouth, where shutters or sliding boards must be used. This plan is highly beneficial where the coals are in large lumps.

Both ropes and chains are used for lifting coals. The round ropes are shroud-laid; but the preferable rope is the flat band, made of four ropes placed horizontally together, the ropes being laid alternately right and left. In this way, the ropes counteract one another in the twist, hanging like a ribbon down the shaft; and are stitched strongly together by a small cord. Such rope bands are not only very pliable for their strength, which protects the heart of the rope from breaking, but as they lap upon themselves, a simple sheave serves as a rope-barrel. They possess the additional advantage, that by so lapping, they enlarge the diameter of the axle in which they coil, and thus make a compensation mechanically against the increasing length of rope descending with its corve. Thus the counterpoise chains, used in deep pits to regulate the descent, have been superseded. See [Rope-spinning].

When chains are preferred to ropes, as in very deep pits, the short pudding-link chains are mostly used. See [Cable].