In addition to the beneficial effects of exercise on the muscles, circulation, and all the functions of the body, are the soothing effects of outdoor life on the nerves. It is only out-of-doors, in the parks, in the country, or by the sea that one is soothed into entire oblivion and forgetfulness of the cares of life, and to such a degree that the individual may be said to be hypnotized by the powers of nature, so that the mind is almost as perfectly at rest as in a sound sleep.
The time spent out-of-doors should not be less than two hours daily. Actual experience of busy workers will prove that not only is this time not lost, but that actually more and better work can be done in the day, and that the resulting improvement in the general health will be so great that much less time will be lost through indisposition and actual sickness, so that the daily outdoor exercise will be found to be a great economic gain.
Outdoor exercises, such as walking, running, swimming, and hill and mountain climbing, possess the very great advantage that indulging in them demands no expense, and are, therefore, open to all. All these exercises develop the lungs and chest and strengthen the heart, and are, therefore, classed under exercises of endurance.
The Effect of Walking on the Heart and Lungs.—In a slow walk the respiratory action is almost double the ordinary amount; in walking at an ordinary pace, that is, about three miles an hour, it is four times as great; while in a vigorous or hasty walk, that is, at a rate of from four to six miles an hour, it is from seven to nine times as great.
The change of speed from three to five miles an hour elevates an automatic, listless occupation into a vigorous exercise, employing many new muscle groups and stimulating the heart, lungs, and skin, while the change from a smooth, level road to the broken ground of the mountain-side may be dangerous for many a one who is able to walk at a moderate speed on level ground.
In walking the clothing must be sufficiently loose not to interfere with the more rapid respirations and the increased action of the heart. When the heart cannot keep pace with the demanded speed of the circulation, a “stitch” ensues, and getting one’s second wind means that the heart has succeeded in accommodating itself to the strain. Too great a “stitch,” resulting in absolute breathlessness, is a warning that must not be disregarded.
This increase in the respiratory action is important, as compared with the brief and transient increase from exercise with apparatus, because a quick walk can easily be kept up for several hours.
The fatigue is small, because, in the first place, of the abundant supply of oxygen; the will is scarcely used, and walking is almost automatic, partly because the muscle areas used are large, and each movement prepares for the next. Walking is a heart and lung exercise of a very excellent sort.
The Effect of Walking on the Movements of the Blood in the Legs.—The circulation of the blood depends on the pumping of the heart, which is in turn affected by the suction action of the lungs and the muscular movements of contraction and relaxation which go on rhythmically. While in prolonged standing the veins of the legs become fuller, and the circulation of blood in them more sluggish, and by the laws of gravitation the blood is kept down in them. Hence also in walking slowly with short steps the legs remain overfull of blood and become heavy. Instead of being quickened, the circulation is actually hindered, for the waste-products are not carried away quickly enough. Hence, slow walking soon causes a feeling of fatigue, while the vigorous walker, going along with long strides, keeps fresh.
Rules for Long Walks.—In walking, not only the distance should be taken into account, but the character of the road and the incline of the ascent. A distance that could be easily covered on a smooth, level highway may mean double the expenditure of muscle and nerve force if the ground is sandy or very damp. Other hindrances to be taken into consideration are opposing winds, not only because of the resistance, but also because of the inhalation of dust and rain.