The Vernier is a movable scale for subdividing parts of a fixed scale, and was first applied to that purpose by its inventor, M. Pierre Vernier, in 1630. In the barometer the parts to be divided are inches, which by the aid of this invention are subdivided into 10ths, 100ths, and 1000ths.

Fig. 27 shows the scale of a standard barometer divided into 1/2-10ths, or ·05 of an inch. The Vernier C D is made equal to 24 of such divisions, and is divided into 25 equal parts, from whence it follows that one division on the scale is 1/25th of ·05 larger than one on the vernier, so that it shows a difference of ·002 of an inch. The vernier reads ·0, or zero, upwards; D, therefore, indicates the top of the mercurial column.

26.
Syphon
Barometer.
Scale
about 1/12.

In Fig. 27, zero on the vernier is exactly in line with 29 inches and 5/10ths of the fixed scale; the reading, therefore, is 29·500 inches. The vernier line a falls short of a division of the scale by ·002-inch; b, by ·004; c, by ·006; d, by ·008; and the succeeding line by ·010. If the vernier be adjusted to make a coincide with z on the scale, it will have moved through ·002-inch; and if 1 on the vernier be moved to coincide with y on the scale, the space measured will be ·010-inch. Consequently, the figures 1, 2, 3, 4, 5, on the vernier, measure 100ths, and the intermediate lines even 1000ths of an inch. In Fig. 28 the zero of the vernier is between 29·65 and 29·70 on the scale. Glancing up the vernier and scale, the second line above 3 will be found in a direct line with one on the scale; this gives ·03 and ·004 to add to 29·65, so that the actual reading is 29·684. In those instances where no line on the vernier is found precisely to coincide with a line on the scale, and doubt arises as to which to select from two equally coincident lines, the rule is to take the intermediate 1000th of an inch.

27. and 28.
The Vernier.

For household and marine barometers such minute subdivisions of the scale are unnecessary, and the scales of such instruments are therefore divided only to 10ths, and the verniers made only to read to 100ths of an inch, which is effected by making the vernier 9/10ths or 11/10ths of an inch long, and dividing it into 10 equal parts.

In “taking a reading” it is important that it should be done as quickly as possible, as the heat from the body and the hand is sufficient to interfere with that accuracy which is necessary where the intention is to compare the readings with those made by other observers. This facility is soon acquired by a little practice.