SECT. IV.

Of Cristallization.

In this process the integrant parts of a solid body, separated from each other by the intervention of a fluid, are made to exert the mutual attraction of aggregation, so as to coalesce and reproduce a solid mass. When the particles of a body are only separated by caloric, and the substance is thereby retained in the liquid state, all that is necessary for making it cristallize, is to remove a part of the caloric which is lodged between its particles, or, in other words, to cool it. If this refrigeration be slow, and the body be at the same time left at rest, its particles assume a regular arrangement, and cristallization, properly so called, takes place; but, if the refrigeration is made rapidly, or if the liquor be agitated at the moment of its passage to the concrete state, the cristallization is irregular and confused.

The same phenomena occur with watery solutions, or rather in those made partly in water, and partly by caloric. So long as there remains a sufficiency of water and caloric to keep the particles of the body asunder beyond the sphere of their mutual attraction, the salt remains in the fluid state; but, whenever either caloric or water is not present in sufficient quantity, and the attraction of the particles for each other becomes superior to the power which keeps them asunder, the salt recovers its concrete form, and the cristals produced are the more regular in proportion as the evaporation has been slower and more tranquilly performed.

All the phenomena we formerly mentioned as taking place during the solution of salts, occur in a contrary sense during their cristallization. Caloric is disengaged at the instant of their assuming the solid state, which furnishes an additional proof of salt being held in solution by the compound action of water and caloric. Hence, to cause salts to cristallize which readily liquify by means of caloric, it is not sufficient to carry off the water which held them in solution, but the caloric united to them must likewise be removed. Nitrat of potash, oxygenated muriat of potash, alum, sulphat of soda, &c. are examples of this circumstance, as, to make these salts cristallize, refrigeration must be added to evaporation. Such salts, on the contrary, as require little caloric for being kept in solution, and which, from that circumstance, are nearly equally soluble in cold and warm water, are cristallizable by simply carrying off the water which holds them in solution, and even recover their solid state in boiling water; such are sulphat of lime, muriat of potash and of soda, and several others.

The art of refining saltpetre depends upon these properties of salts, and upon their different degrees of solubility in hot and cold water. This salt, as produced in the manufactories by the first operation, is composed of many different salts; some are deliquescent, and not susceptible of being cristallized, such as the nitrat and muriat of lime; others are almost equally soluble in hot and cold water, as the muriats of potash and of soda; and, lastly, the saltpetre, or nitrat of potash, is greatly more soluble in hot than it is in cold water. The operation is begun, by pouring upon this mixture of salts as much water as will hold even the least soluble, the muriats of soda and of potash, in solution; so long as it is hot, this quantity readily dissolves all the saltpetre, but, upon cooling, the greater part of this salt cristallizes, leaving about a sixth part remaining dissolved, and mixed with the nitrat of lime and the two muriats. The nitre obtained by this process is still somewhat impregnated with other salts, because it has been cristallized from water in which these abound: It is completely purified from these by a second solution in a small quantity of boiling water, and second cristallization. The water remaining after these cristallizations of nitre is still loaded with a mixture of saltpetre, and other salts; by farther evaporation, crude saltpetre, or rough-petre, as the workmen call it, is procured from it, and this is purified by two fresh solutions and cristallizations.

The deliquescent earthy salts which do not contain the nitric acid are rejected in this manufacture; but those which consist of that acid neutralized by an earthy base are dissolved in water, the earth is precipitated by means of potash, and allowed to subside; the clear liquor is then decanted, evaporated, and allowed to cristallize. The above management for refining saltpetre may serve as a general rule for separating salts from each other which happen to be mixed together. The nature of each must be considered, the proportion in which each dissolves in given quantities of water, and the different solubility of each in hot and cold water. If to these we add the property which some salts possess, of being soluble in alkohol, or in a mixture of alkohol and water, we have many resources for separating salts from each other by means of cristallization, though it must be allowed that it is extremely difficult to render this separation perfectly complete.

The vessels used for cristallization are pans of earthen ware, A, Pl. II. Fig. 1. and 2. and large flat dishes, Pl. III. Fig. 7. When a saline solution is to be exposed to a slow evaporation in the heat of the atmosphere, with free access of air, vessels of some depth, Pl. III. Fig. 3. must be employed, that there may be a considerable body of liquid; by this means the cristals produced are of considerable size, and remarkably regular in their figure.

Every species of salt cristallizes in a peculiar form, and even each salt varies in the form of its cristals according to circumstances, which take place during cristallization. We must not from thence conclude that the saline particles of each species are indeterminate in their figures: The primative particles of all bodies, especially of salts, are perfectly constant in their specific forms; but the cristals which form in our experiments are composed of congeries of minute particles, which, though perfectly equal in size and shape, may assume very dissimilar arrangements, and consequently produce a vast variety of regular forms, which have not the smallest apparent resemblance to each other, nor to the original cristal. This subject has been very ably treated by the Abbé Haüy, in several memoirs presented to the Academy, and in his work upon the structure of cristals: It is only necessary to extend generally to the class of salts the principles he has particularly applied to some cristalized stones.

SECT. V.