CHAP. VI.

Of Pneumato-chemical Distillations, Metallic Dissolutions, and some other operations which require very complicated instruments.

SECT. I.

Of Compound and Pneumato-chemical Distillations.

In the preceding chapter, I have only treated of distillation as a simple operation, by which two substances, differing in degrees of volatility, may be separated from each other; but distillation often actually decomposes the substances submitted to its action, and becomes one of the most complicated operations in chemistry. In every distillation, the substance distilled must be brought to the state of gas, in the cucurbit or retort, by combination with caloric: In simple distillation, this caloric is given out in the refrigeratory or in the worm, and the substance again recovers its liquid or solid form, but the substances submitted to compound distillation are absolutely decompounded; one part, as for instance the charcoal they contain, remains fixed in the retort, and all the rest of the elements are reduced to gasses of different kinds. Some of these are susceptible of being condensed, and of recovering their solid or liquid forms, whilst others are permanently aëriform; one part of these are absorbable by water, some by the alkalies, and others are not susceptible of being absorbed at all. An ordinary distilling apparatus, such as has been described in the preceding chapter, is quite insufficient for retaining or for separating these diversified products, and we are obliged to have recourse, for this purpose, to methods of a more complicated nature.

The apparatus I am about to describe is calculated for the most complicated distillations, and may be simplified according to circumstances. It consists of a tubulated glass retort A, Pl. IV. Fig. 1. having its beak fitted to a tubulated balloon or recipient BC; to the upper orifice D of the balloon a bent tube DEfg is adjusted, which, at its other extremity g, is plunged into the liquor contained in the bottle L, with three necks xxx. Three other similar bottles are connected with this first one, by means of three similar bent tubes disposed in the same manner; and the farthest neck of the last bottle is connected with a jar in a pneumato-chemical apparatus, by means of a bent tube[60]. A determinate weight of distilled water is usually put into the first bottle, and the other three have each a solution of caustic potash in water. The weight of all these bottles, and of the water and alkaline solution they contain, must be accurately ascertained. Every thing being thus disposed, the junctures between the retort and recipient, and of the tube D of the latter, must be luted with fat lute, covered over with slips of linen, spread with lime and white of egg; all the other junctures are to be secured by a lute made of wax and rosin melted together.

When all these dispositions are completed, and when, by means of heat applied to the retort A, the substance it contains becomes decomposed, it is evident that the least volatile products must condense or sublime in the beak or neck of the retort itself, where most of the concrete substances will fix themselves. The more volatile substances, as the lighter oils, ammoniac, and several others, will condense in the recipient GC, whilst the gasses, which are not susceptible of condensation by cold, will pass on by the tubes, and boil up through the liquors in the several bottles. Such as are absorbable by water will remain in the first bottle, and those which caustic alkali can absorb will remain in the others; whilst such gasses as are not susceptible of absorption, either by water or alkalies, will escape by the tube RM, at the end of which they may be received into jars in a pneumato-chemical apparatus. The charcoal and fixed earth, &c. which form the substance or residuum, anciently called caput mortuum, remain behind in the retort.

In this manner of operating, we have always a very material proof of the accuracy of the analysis, as the whole weights of the products taken together, after the process is finished, must be exactly equal to the weight of the original substance submitted to distillation. Hence, for instance, if we have operated upon eight ounces of starch or gum arabic, the weight of the charry residuum in the retort, together with that of all the products gathered in its neck and the balloon, and of all the gas received into the jars by the tube RM added to the additional weight acquired by the bottles, must, when taken together, be exactly eight ounces. If the product be less or more, it proceeds from error, and the experiment must be repeated until a satisfactory result be procured, which ought not to differ more than six or eight grains in the pound from the weight of the substance submitted to experiment.

In experiments of this kind, I for a long time met with an almost insurmountable difficulty, which must at last have obliged me to desist altogether, but for a very simple method of avoiding it, pointed out to me by Mr Hassenfratz. The smallest diminution in the heat of the furnace, and many other circumstances inseparable from this kind of experiments, cause frequent reabsorptions of gas; the water in the cistern of the pneumato-chemical apparatus rushes into the last bottle through the tube RM, the same circumstance happens from one bottle into another, and the fluid is often forced even into the recipient C. This accident is prevented by using bottles having three necks, as represented in the plate, into one of which, in each bottle, a capillary glass-tube St, st, st, st, is adapted, so as to have its lower extremity t immersed in the liquor. If any absorption takes place, either in the retort, or in any of the bottles, a sufficient quantity of external air enters, by means of these tubes, to fill up the void; and we get rid of the inconvenience at the price of having a small mixture of common air with the products of the experiment, which is thereby prevented from failing altogether. Though these tubes admit the external air, they cannot permit any of the gasseous substances to escape, as they are always shut below by the water of the bottles.