The reverberatory furnace, Pl. XIII. Fig. 2. is perhaps more necessary. This, like the common furnace, is composed of the ash-hole HIKL, the fire-place KLMN, the laboratory MNOP, and the dome RRSS, with its funnel or chimney TTVV; and to this last several additional tubes may be adapted, according to the nature of the different experiments. The retort A is placed in the division called the laboratory, and supported by two bars of iron which run across the furnace, and its beak comes out at a round hole in the side of the furnace, one half of which is cut in the piece called the laboratory, and the other in the dome. In most of the ready made reverberatory furnaces which are sold by the potters at Paris, the openings both above and below are too small: These do not allow a sufficient volume of air to pass through; hence, as the quantity of charcoal consumed, or, what is much the same thing, the quantity of caloric disengaged, is nearly in proportion to the quantity of air which passes through the furnace, these furnaces do not produce a sufficient effect in a great number of experiments. To remedy this defect, there ought to be two openings GG to the ash-hole; one of these is shut up when only a moderate fire is required; and both are kept open when the strongest power of the furnace is to be exerted. The opening of the dome SS ought likewise to be considerably larger than is usually made.

It is of great importance not to employ retorts of too large size in proportion to the furnace, as a sufficient space ought always to be allowed for the passage of the air between the sides of the furnace and the vessel. The retort A in the figure is too small for the size of the furnace, yet I find it more easy to point out the error than to correct it. The intention of the dome is to oblige the flame and heat to surround and strike back or reverberate upon every part of the retort, whence the furnace gets the name of reverberatory. Without this circumstance the retort would only be heated in its bottom, the vapours raised from the contained substance would condense in the upper part, and a continual cohabitation would take place without any thing passing over into the receiver, but, by means of the dome, the retort is equally heated in every part, and the vapours being forced out, can only condense in the neck of the retort, or in the recipient.

To prevent the bottom of the retort from being either heated or coolled too suddenly, it is sometimes placed in a small sand-bath of baked clay, standing upon the cross bars of the furnace. Likewise, in many operations, the retorts are coated over with lutes, some of which are intended to preserve them from the too sudden influence of heat or of cold, while others are for sustaining the glass, or forming a kind of second retort, which supports the glass one during operations wherein the strength of the fire might soften it. The former is made of brick-clay with a little cow's hair beat up alongst with it, into a paste or mortar, and spread over the glass or stone retorts. The latter is made of pure clay and pounded stone-ware mixed together, and used in the same manner. This dries and hardens by the fire, so as to form a true supplementary retort capable of retaining the materials, if the glass retort below should crack or soften. But, in experiments which are intended for collecting gasses, this lute, being porous, is of no manner of use.

In a great many experiments wherein very violent fire is not required, the reverberatory furnace may be used as a melting one, by leaving out the piece called the laboratory, and placing the dome immediately upon the fire-place, as represented Pl. XIII. Fig. 3. The furnace represented in Fig. 4. is very convenient for fusions; it is composed of the fire-place and ash-hole ABD, without a door, and having a hole E, which receives the muzzle of a pair of bellows strongly luted on, and the dome ABGH, which ought to be rather lower than is represented in the figure. This furnace is not capable of producing a very strong heat, but is sufficient for ordinary operations, and may be readily moved to any part of the laboratory where it is wanted. Though these particular furnaces are very convenient, every laboratory must be provided with a forge furnace, having a good pair of bellows, or, what is more necessary, a powerful melting furnace. I shall describe the one I use, with the principles upon which it is constructed.

The air circulates in a furnace in consequence of being heated in its passage through the burning coals; it dilates, and, becoming lighter than the surrounding air, is forced to rise upwards by the pressure of the lateral columns of air, and is replaced by fresh air from all sides, especially from below. This circulation of air even takes place when coals are burnt in a common chaffing dish; but we can readily conceive, that, in a furnace open on all sides, the mass of air which passes, all other circumstances being equal, cannot be so great as when it is obliged to pass through a furnace in the shape of a hollow tower, like most of the chemical furnaces, and consequently, that the combustion must be more rapid in a furnace of this latter construction. Suppose, for instance, the furnace ABCDEF open above, and filled with burning coals, the force with which the air passes through the coals will be in proportion to the difference between the specific gravity of two columns equal to AC, the one of cold air without, and the other of heated air within the furnace. There must be some heated air above the opening AB, and the superior levity of this ought likewise to be taken into consideration; but, as this portion is continually coolled and carried off by the external air, it cannot produce any great effect.

But, if we add to this furnace a large hollow tube GHAB of the same diameter, which preserves the air which has been heated by the burning coals from being coolled and dispersed by the surrounding air, the difference of specific gravity which causes the circulation will then be between two columns equal to GC. Hence, if GC be three times the length of AC, the circulation will have treble force. This is upon the supposition that the air in GHCD is as much heated as what is contained in ABCD, which is not strictly the case, because the heat must decrease between AB and GH; but, as the air in GHAB is much warmer than the external air, it follows, that the addition of the tube must increase the rapidity of the stream of air, that a larger quantity must pass through the coals, and consequently that a greater degree of combustion must take place.

We must not, however, conclude from these principles, that the length of this tube ought to be indefinitely prolonged; for, since the heat of the air gradually diminishes in passing from AB to GH, even from the contact of the sides of the tube, if the tube were prolonged to a certain degree, we would at last come to a point where the specific gravity of the included air would be equal to the air without; and, in this case, as the cool air would no longer tend to rise upwards, it would become a gravitating mass, resisting the ascension of the air below. Besides, as this air, which has served for combustion, is necessarily mixed with carbonic acid gas, which is considerably heavier than common air, if the tube were made long enough, the air might at last approach so near to the temperature of the external air as even to gravitate downwards; hence we must conclude, that the length of the tube added to a furnace must have some limit beyond which it weakens, instead of strengthening the force of the fire.

From these reflections it follows, that the first foot of tube added to a furnace produces more effect than the sixth, and the sixth more than the tenth; but we have no data to ascertain at what height we ought to stop. This limit of useful addition is so much the farther in proportion as the materials of the tube are weaker conductors of heat, because the air will thereby be so much less coolled; hence baked earth is much to be preferred to plate iron. It would be even of consequence to make the tube double, and to fill the interval with rammed charcoal, which is one of the worst conductors of heat known; by this the refrigeration of the air will be retarded, and the rapidity of the stream of air consequently increased; and, by this means, the tube may be made so much the longer.

As the fire-place is the hottest part of a furnace, and the part where the air is most dilated in its passage, this part ought to be made with a considerable widening or belly. This is the more necessary, as it is intended to contain the charcoal and crucible, as well as for the passage of the air which supports, or rather produces the combustion; hence we only allow the interstices between the coals for the passage of the air.

From these principles my melting furnace is constructed, which I believe is at least equal in power to any hitherto made, though I by no means pretend that it possesses the greatest possible intensity that can be produced in chemical furnaces. The augmentation of the volume of air produced during its passage through a melting furnace not being hitherto ascertained from experiment, we are still unacquainted with the proportions which should exist between the inferior and superior apertures, and the absolute size of which these openings should be made is still less understood; hence data are wanting by which to proceed upon principle, and we can only accomplish the end in view by repeated trials.