THE MOUNTAINS AND TABLELANDS.

A true mountain-chain is the result of plication of the earth's crust, and its external form, in spite of sometimes enormous denudation, bears a relation to the contours produced by the original uplift. Tried by this standard, hardly any of the heights of Britain deserve the name of mountains. With some notable exceptions in the south of Ireland, they are due not to local but to general upheavals, and their outlines have little or no connection with those due to underground movement, but have been carved out of upheaved areas of unknown form by the various forces of erosion. In the course of their denudation, the nature of their component rocks has materially influenced the elaboration of their contours, each well-marked type of rock having its own characteristic variety of mountain forms.

The relative antiquity of our mountains must be decided not necessarily by the geological age of their component materials, but by the date of their upheaval or of their exposure by denudation. In many cases they can be shown to be the result of more than one uplift. The Malvern Hills, for example, which from their dignity of outline better deserve the name of mountains than many higher eminences, bear internal evidence of having been upheaved during at least four widely separated geological periods, the earliest movement dating from before the time of the Upper Cambrian, the latest coming down to some epoch later probably than the Jurassic period.

The oldest mountain fragments in Britain are those of the Archæan rocks, and of these the largest portions occur in the north-west of Scotland.[59] Most of our mountains, however, belong to upheavals dating from Palæozoic time, though the actual exposure and shaping of them into their present forms must be referred to a far later period. Two leading epochs of movement in Palæozoic time can be recognised. Of these the older, dating from before the Lower Old Red Sandstone and part at least of the Upper Silurian period, was distinguished by the plication of the rocks in a dominant north-east and south-west direction, and the effects of these movements can be traced in the trend of the Lower Silurian ridges and hollows to the present day.

In Wales two types of mountain-form exist—the Snowdon type, and that of the Breconshire Beacons. In the former, the greater prominence of the high grounds arises primarily from the existence of masses of volcanic rocks, which from their superior durability have been better able to withstand the progress of degradation. In the latter the heights are merely the remaining fragments of a once continuous tableland of Old Red Sandstone.

The Lake District presents a remarkable radiation of valleys from a central mass of high ground. It might be supposed that these valleys have been determined by some radiating system of fractures in the rocks; but an examination of the area shows them to be singularly independent of geological structure. So much do they disregard the strike, alternations, and dislocations of the rocks among which they lie that the conclusion is forced upon us that they have been determined by some cause independent of that structure, and before the rocks now visible were exposed at or could affect the surface. This could only have happened by the spread of a deep cover of later rocks over the site of the Lake mountains. The former presence of such a cover, which is demanded for the explanation of the valleys, can be inferred from other evidence. The Carboniferous Limestone on the flanks of the Lake District is so thick that it must have spread nearly or entirely over the site of the mountains. But it was overlain by the Millstone Grit and Coal-measures, so that the whole area was probably buried under several thousand feet of Carboniferous strata which stretched continuously across what is now the north of England. At the time of the formation of the anticlinal fold of the Pennine Chain, the site of the Lake District appears to have been upraised as a dome-shaped eminence, the summit of which lay over the tract now occupied by the heights from Scafell to Helvellyn. The earliest rain that fell upon this eminence would gather into divergent streams from the central watershed. In the course of ages, after possibly repeated uplifts, these streams have cut down into the underlying core of old Palæozoic rocks, retaining on the whole their original trend. Meanwhile the whole of the overlying mantle of later formations has been stripped from the dome, and is now found only along the borders of the mountains. The older rocks, partly faulted down and yielding to erosion, each in its own way, have gradually assumed that picturesqueness of detail for which the area is so deservedly famous.

The Scottish Highlands likewise received their initial plications during older Palæozoic time, their component rocks having been thrown into sharp folds trending in a general north-east and south-west direction.[60] But there is reason to believe that they were subsequently in large measure buried under Old Red Sandstone, and possibly under later accumulations. No positive evidence exists as to the condition of this region during the vast interval between the Old Red Sandstone and the older Secondary rocks. We can hardly believe it to have remained as land during all that time, otherwise, the denudation, vast as it is, would probably have been still greater. Not improbably the region had become stationary at a base-level of erosion beneath the sea; that is, it lay too low to be effectively abraded by breaker-action, and too high to become the site of any important geological formation. The present ridges and valleys of the Highlands are entirely the work of erosion. When they began to be traced, the area probably presented the aspect of a wide undulating tableland. Since that early time the valleys have sunk deeper and deeper into the framework of the land, the ridges have grown narrower, and the mountains have arisen, not by upheaval from below, but by the carving away of the rest of the block of which they formed a part. In this evolution, geological structure has played an important part in guiding the erosive tools. The composition of the rock-masses has likewise been effective in determining the individuality of the mountain-forms.

The mountains of Ireland are distributed in scattered groups round the great central plain, and belong to at least three geological periods. The oldest groups probably took their rise at the time of the older Palæozoic upheaval, those of the north-west being a continuation of the Scottish Highlands, and those of the south-east being a prolongation of those of Wales. Later in date as regards the underground movements that determined their site, are the mountainous ridges of Kerry and Cork. These are local uplifts which, though on a small scale, are by far the best examples in Britain of true mountain-structure. The Old Red Sandstone and Carboniferous rocks have there been thrown into broad arches and troughs which run in a general east and west direction. In some cases, as in the Knockmealdown Mountain, the arch is composed entirely of Old Red Sandstone flanked with Carboniferous strata. But in most instances an underlying core of Silurian rocks has been exposed along the centre of the arch. As not only the Carboniferous Limestone, but the rest of the Carboniferous system covered the south of Ireland and participated in this plication, the amount of denudation from these ridges has been enormous. On the Galty range, for example, it can hardly have been less but may have been more than 12,000 feet. The third and latest group of Irish mountains is that of Mourne and Carlingford, which may with some probability be referred to older Tertiary time when the similar granitic and porphyritic masses in Mull and Skye were erupted.

The Tablelands of Britain strictly include the mountains, which are in general only prominences carved out of tablelands. There are still, indeed, large areas in which the plateau character is well shown. Of these the most extensive and in many respects the most interesting is the present tableland or plain of Central Ireland. As now exposed, this region lies upon an undulating eroded surface of Carboniferous Limestone. But it was formerly covered by at least 3,000 or 4,000 feet more of Carboniferous strata, as can be shown by the fragments that remain.[61] The present system of drainage across the centre of Ireland took its origin long before the ancient tableland had been reduced to its present level, and before some of the ridges, now prominent, had been exposed to the light.