ii. FRAGMENTAL ROCKS

While the plateaux are built up mainly of successive flows of basaltic lavas, they include various intercalations of fragmental materials, which, though of trifling thickness, are of great interest and importance in regard to the light which they cast on the history of the different regions during the volcanic period. I shall enumerate the chief varieties of these rocks here, and afterwards give fuller details regarding their stratigraphical relations and mode of occurrence in connection with the succession of beds in each of the plateaux.

(a) Volcanic Agglomerates.—In the tumultuous unstratified masses of fragmentary materials which fill eruptive vents in and around the plateaux, the stones, which vary in size up to blocks several feet in diameter, consist for the most part of basalts, often highly slaggy and scoriaceous. They include also fragments of different acid eruptive rocks (generally felsitic or rhyolitic in texture), with pieces of the non-volcanic rocks through which the volcanic pipes have been drilled. The paste is granular, dirty-green or brown in colour, and seems generally to consist chiefly of comminuted basalt. As in the Carboniferous and Permian necks, the Tertiary agglomerates contain abundant detritus of a basic minutely cellular pumice.

(b) Volcanic Conglomerates and Breccias in beds intercalated between the flows of Basalt.—These are of at least three kinds. (a) Basalt-conglomerates, composed mainly of rounded and subangular blocks of basalt (or allied basic lava), sometimes a yard or more in diameter, not unfrequently in the form of pieces of rough slag or even of true bombs, imbedded in a granular matrix of comminuted basalt-debris. In some cases, the stones form by far the most abundant constituents of the rock, which then resembles some of the coarse agglomerates just described. Perhaps the most remarkable accumulations of this kind are those intercalated among the basalts in the islands of Canna and Sanday, of which a detailed account will be given in Chapter xxxviii. These conglomerates, besides their volcanic materials, contain rounded blocks of Torridon sandstone and other rocks, which must have been carried from the east by some tolerably powerful river that flowed across the basalt-plains during the volcanic period. Again, on the east side of Mull, the slaggy basalts of Beinn Chreagach Mhor are occasionally separated by volcanic conglomerates. As a rule, however, such intercalations are seldom more than a few feet or yards in thickness. Their coarseness and repetition on successive horizons indicate that they probably accumulated in the near neighbourhood of one or more small vents, from which discharges of fragmentary materials took place at the beginning or at the close of an outflow of lava, and that the stones were sometimes swept away from the cones and rolled about by streams before being buried under the succeeding lava-sheets. More commonly the dirty-green or dark-brown granular matrix exceeds in bulk the stones embedded in it. It has obviously been derived mainly from the trituration of already cooled basalt—masses, and probably also from explosions of the still molten rock in the vents. A striking illustration of this type of rock may be seen on the south side of Portree Harbour, where a mass of dark-green basalt-conglomerate, with a coaly layer above it, lies near the base of the bedded basalts, and attains at one part of its course a thickness of about 200 feet. This rock will be again referred to in connection with the vent from which its materials were probably derived. As in the case of the agglomerates of the vents, pieces of older acid lavas, and still more of the non-volcanic rocks that underlie the plateaux, are found in the bedded conglomerates and breccias. In Antrim and Mull, for instance, fragments of flint and chalk are of common occurrence. A characteristic example of this kind of rock forms the platform of the columnar bed out of which Fingal's Cave, Staffa, has been excavated ([Fig. 266]a).

(β) Felsitic Breccia.—This variety, though of rare occurrence, is to be seen in a number of localities in the island of Mull. It is composed in great measure of angular fragments of close-grained flinty felsitic or rhyolitic rocks, sometimes showing beautiful flow-structure, together with pieces of quartzite and amygdaloidal basalt, the dull dirty-green matrix appearing to be made up chiefly of basalt-dust.

(γ) Rhyolitic Conglomerate.—Between the upper and lower group of basalts in the Antrim plateau there occur bands of a pale fawn-coloured conglomerate largely made up of more or less rounded fragments of rhyolite, like some of the varieties of the rock which occur in place on the plateau. The rhyolitic debris is often mixed with pebbles of basalt. Sometimes it becomes so fine as to pass into pale clays.

(δ) Breccias of non-volcanic materials.—These, the most exceptional of all the fragmentary intercalations in the plateaux, consist almost wholly of angular blocks of rocks which are known to underlie the basalts, but with a variable admixture of basalt fragments. They are due to volcanic explosions which shattered the subjacent older crust of rocks, and discharged fragments of these from the vents or allowed them to be borne upwards on an ascending column of lava. Pieces of the non-volcanic platform are of common occurrence among the fragmentary accumulations, especially in the lower parts of the plateaux basalts. But I have never seen so remarkable an example of a breccia of this kind as that which occurs near the summit of Sgurr Dearg, in the south-east of Mull. The bedded basalt encloses a lenticular band of exceedingly coarse breccia, consisting mainly of angular pieces of quartzite, with fragments of amygdaloidal basalt. In the midst of the breccia lies a huge mass or cake of erupted mica-schist, at least 100 yards long by 30 yards wide, as measured across the strike up the slope of the hill. To the west, owing to the thinning out of the breccia, this piece of schist comes to lie between two beds of basalt. A little higher up, other smaller but still large blocks of similar schist are involved in the basalt, as shown in [Fig. 262]. As the huge cake of mica-schist plunges into the hill, its whole dimensions cannot be seen; but there are visible, at least, 15,000 cubic yards, which must weigh more than 30,000 tons. Blocks of quartzite of less dimensions occur in the basalts on Loch Spelve, in the same district. There can be no doubt, I think, that these enormous fragments were torn off from the underlying crystalline schists which form the framework of the Western Highlands, and were floated upward in an ascending flow of molten basalt. Had the largest mass occurred at or near the base of the volcanic series, its size and position would have been less remarkable. But it lies more than 2000 feet up in the basalts, and hence must have been borne upward for more than that height. A similar but less striking breccia occurs on the south coast of the same island, near Carsaig, made up chiefly of pieces of quartzite and quartz.[228]

[228] This is noticed by Mr. Starkie Gardner, Quart. Journ. Geol. Soc. xliii. (1887), p. 283, note.

Some remarkable agglomerates, near Forkhill, Armagh, probably belonging to the Tertiary volcanic series, will be described in the account of the Irish acid rocks (Chapter xlvii.). They consist entirely of non-volcanic stones and dust and are traceable for some miles along the line of a fissure. Where they have been discharged through granite they consist entirely of the detritus of that rock, but where they have been erupted in the Silurian area they consist of fragments of grits and shales. They seem to have been produced by æriform discharges, without the uprise of any volcanic magma, though eventually andesite and rhyolite ascended the fissure and became full of granitic and Silurian fragments.

Some remarkable necks filled almost entirely with fragments of Torridon Sandstone have been observed in the west of Applecross, Ross-shire, and some curious plug-like masses of breccia, also made up of fragments of Torridonian strata, occur in the island of Raasay. These examples will be more particularly described on later pages (pp. [292], [293]).