Fig. 277.—Section of the geological structure of the Island of Eigg.
P, Pitchstone-lava of Scuir; c, ancient river-gravel; p p, pitchstone veins; f f, intrusive granophyre, etc.; b b, dolerite and basalt dykes and veins; B, intrusive dolerite and basalt-sheets; D, bedded dolerites and basalts; F, andesite bed; 1-4, Jurassic rocks.

In Eigg the fragment of the basalt-plateau which has been preserved, rests unconformably on successive platforms of the Jurassic formations. Its component sheets of lava rise in cliffs around the greater part of the island. As they dip gently southwards their lower members are seen along the northern and eastern shores, while on the south-west side their higher portions are exposed in the lofty precipices which there plunge vertically into the sea. The total thickness of the volcanic series may here be about 1100 feet. The rocks consist of the usual types—black, fine-grained, columnar and amorphous basalts, more coarsely crystalline dolerites, dull earthy amygdaloids with red partings, and occasional thin bands of basalt-conglomerate or tuff. The individual beds range in thickness from 20 to 50 or 60 feet. Though they seem quite continuous when looked at from the sea, yet, on closer examination, they are found not unfrequently to die out, the place of one bed being taken by another, or even by more than one, in continuation of the same horizon. The only marked petrographical variety which occurs among them is a light-coloured band which stands out conspicuously among the darker ordinary sheets of the escarpment on the east side of the island. The microscopic characters of this rock show it to belong to the same series of highly felspathic, andesitic, or trachitic lavas as the "pale group" of Ben More, in Mull. It is strongly vesicular, and the cells are in some parts so flattened and elongated as to impart a kind of fissile texture to the rock. There can be no doubt that this band is a true lava, and that it was poured out during the accumulation of the basalt-plateau. It supplies an interesting example of the intercalation of a lighter and less basic lava among the ordinary heavy basic basalts and dolerites.

That feature of the island of Eigg which renders it so remarkable and conspicuous an object on the west coast is the long ridge of the Scuir. Rising gently from the valley which crosses the island from Laig Bay to the Harbour, the basaltic plateau ascends south-westwards in a succession of terraces, until along its upper part it forms a long crest, from 900 to 1000 feet above the sea, to which it descends on the other or south-west side, first by a sharp slope, and then by a range of precipices. Along the watershed of this crest runs, in a graceful double curve, the abrupt ridge of the Scuir, terminating on the north-west at the edge of the great sea-cliff (975 feet), and ending off on the south-east in that strange well-known mountain-wall (1272 feet high) which rises in a sheer cliff nearly 300 feet above the basalt-plateau on the one side and more than 400 feet on the other ([Fig. 278]). The total length of the Scuir ridge is two miles and a quarter, its greatest breadth 1520, its least breadth 350 feet. Its surface is very irregular, rising into minor hills and sinking into rock-basins, of which nine are small tarns, besides still smaller pools, while six others, also filled with water, lie partly on the ridge and partly on the basaltic plateau. No one, indeed, who looks on the Scuir from below, and notes how evenly it rests upon the basalt-plateau, would be prepared for so rugged a landscape as that which meets his eye everywhere along the top of the ridge. Two minor arms project from the east side of the ridge; one of these forms the rounded hill called Beinn Tighe (968 feet), the other the hill of A chor Bheinn.

Fig. 278.—View of the Scuir of Eigg from the east.

Singular as the Scuir of Eigg is, regarded merely as one of the landmarks of the Hebrides, its geological history is not less peculiar. The natural impression which arises in the mind when this mountain comes into view for the first time is, that the huge wall is part of a great dyke or intrusive mass which has been thrust through the older rocks.[252] It was not until after some time that the influence of this first impression passed off my own mind, and the true structure of the mass became apparent.

[252] Hay Cunningham remarks:—"In regard to the relations of the pitchstone-porphyry of the Scuir and the trap-rocks with which it is connected, it can, after a most careful examination around the whole mass, be confidently asserted that it exists as a great vein which has been erupted through the other Plutonic rocks—thus agreeing in age with all the other pitchstones of the island." Macculloch leaves us to infer that he regarded the rock of the Scuir to be regularly interstratified with the highest beds of the dolerite series (Western Isles, i. p. 522). Hugh Miller speaks of the Scuir of Eigg as "resting on the remains of a prostrate forest."—Cruise of the Betsy, p. 32.

The ridge of the Scuir, presenting as it does so strong a topographical contrast to the green terraced slopes of the plateau-basalts on which it rests, consists of some very distinct bands of black and grey lava, long known as "pitchstone-porphyry." To the nature and history of these rocks I shall return after we have considered a remarkable bed of conglomerate which lies below them. On the lower or southern side of the ridge the bottom of the pitchstone, dipping into the hill, is exposed on the roof of a small cave where the ends of its columns form a polygonal reticulation. It is there seen to repose upon a bed of breccia or conglomerate, having a pale-yellow or grey felspathic matrix like the more decomposing parts of the grey devitrified parts of the pitchstone. Through this deposit are dispersed great numbers of angular and subangular pieces of pitchstone, some of which have a striped texture. Fragments of basalt, red (Torridon) sandstone, and other rocks are rare; and the bed suggests the idea that it is a kind of brecciated base or floor of the main pitchstone mass. A similar rock is found along the bottom of the pitchstone on both sides of the ridge (c, in [Fig. 279]). Here and there where this breccia is only a yard or two in thickness, it consists of subangular fragments of the various dolerites and basalts of the neighbourhood, together with pieces of red sandstone, quartzite, clay-slate, etc. The matrix is in some places a mass of hard basalt debris; in others it becomes more calcareous, passing into a sandstone or grit in which chips and angular or irregular-shaped pieces of coniferous wood are abundant.[253] A little further east, beyond the base of the Scuir, a patch of similar breccia is seen, but with the stones much more rounded and smoothed. This outlier rests against the denuded ends of the basalt-beds forming the side of the hill. Its interest arises from the evidence it affords of the prolongation of the deposit eastward, and consequently of the former extension of the precipice of the Scuir considerably beyond its present front.

[253] The microscopic structure of this wood was briefly described by Witham (Fossil Vegetables, p. 37), and two magnified representations were given to show its coniferous character. Lindley and Hutton further described it in their "Fossil Flora," naming it Pinites eiggensis, and regarding it as belonging to the Oolitic series of the Hebrides—an inference founded perhaps on the erroneous statement of Witham to that effect. William Nicol corrected that statement by showing that the wood-fragments occurred, not among the "lias rocks," but "among the debris of the pitchstone" (Edin. New Phil. Journal, xviii. p. 154). Hay Cunningham, in the paper already cited, states that the fossil wood really lies in the pitchstone itself! The actual position of the wood, however, in the breccia and conglomerates underlying the pitchstone is beyond all dispute. I have myself dug it out of the bed. The geological horizon assigned to this conifer, on account of its supposed occurrence among Oolitic rocks, being founded on error, no greater weight can be attached to the identification of the plant with an Oolitic species. Our knowledge of the specific varieties of the microscopic structure of ancient vegetation is hardly precise enough to warrant us in definitely fixing the horizon of a plant merely from the examination of the minute texture of a fragment of its wood. From the internal organization of the Eigg pine, there is no evidence that the fossil is of Jurassic age. From the position of the wood above the dolerites and underneath the pitchstone of the Scuir it is absolutely certain that the plant is not of Jurassic but of Tertiary date.

It is at the extreme north-western extremity of the pitchstone ridge, however, that the most remarkable exposure of this intercalated detrital band is now to be seen. Sweeping along the crest of the plateau the ridge reaches the edge of the great precipice of Bideann Boidheach, by which its end is truncated, so as to lay open a section of the gravelly deposit along which the pitchstone flowed.