Fig. 188.—Section of successive discharges and disturbances within a volcanic vent. Scarlet Point, Isle of Man.

Again, in the largest of the vents, that near Scarlet Point, still clearer proof of successive eruptions and dislocations within a volcanic chimney may be noticed. At one point the accompanying section (Fig. 188) has been laid bare by the waves. The oldest accumulation is a fine green granular tuff (a), rudely and faintly arranged in layers inclined at high angles, like the fine materials in many of the vents of the basin of the Firth of Forth. This peculiar stratification, due not to the assortment of materials in water, but to the deposition of coarser and finer detritus by successive explosions, and to subsequent slipping or tilting, is a characteristic feature of the detritus which has filled up ancient volcanic funnels. A later explosion from some adjacent part of the same vent has given rise to the discharge of a coarse agglomerate (b), which with blocks sometimes six feet long, overspreads the earlier material. A third detrital accumulation in the same vent, consisting of a firm brecciated tuff (c) with much calcite in its matrix, has been brought down by a slip (f) which cuts across both of the previous deposits. A broad dyke (d) of vesicular diabase (augite-porphyry) traverses the vent, and is probably later than any of the other rocks in the section.

I will conclude this account of the Manx Carboniferous volcanic rocks with a brief reference to the intrusive masses which form a prominent feature of the coast-line. From the picturesque headland of Scarlet Point the broad dyke which forms that promontory may be traced for some distance westwards. Several other parallel dykes run in the same direction which, it will be observed, is also that of the chain of vents. It might be said that the vents are, as it were, strung together by a line of dykes. These eruptive masses traverse both the agglomerates and the bedded tuffs. They probably belong, therefore, to a comparatively late part of the volcanic history. That they are truly intrusive and not lava-flows is, I think, clearly shown by their vertical walls which descend through the surrounding rocks, and by the greater closeness of their texture, as well as the diminution in the size of their vesicles along the contact surfaces. But it must be admitted that in their remarkably developed vesicular structure they look more like streams of lava than ordinary dykes.

It is this structure which gives to these dykes their peculiar interest. Bands of vesicles, from an inch or less to several inches in breadth, run along the dykes parallel to the outer walls. Unlike the familiar rows of little amygdaloidal cells in ordinary basalt dykes, such as those of the Tertiary series in Scotland, these vesicles, though small and pea-like in the narrower bands towards the margins of the dykes, became so large, numerous, and irregular in the broader and more central bands, that the rock passes there into a rough slag.

Fig. 189.—Section of dyke and sill in the tuffs west of Scarlet Point, Isle of Man.

While the intrusive material has for the most part risen in the form of dykes, in one part of the coast-section, a little to the west of Scarlet Point, it has been injected as a sill among the bedded tuffs.[58] A section taken at this locality gives the structure represented in [Fig. 189]. On the north side of the great dyke, the strata of tuff which dip under it, roll over and support an outlying sheet of the same material. The slaggy structure of parts of this sill give it some resemblance to a true lava-flow. But it is the same structure which can be seen in the dykes, while the closer grain along the contact-surface further connects it with these intrusions.

[58] It is this sheet which has been described as a lava-stream.

Fig. 190.—Section on south side of vesicular sill
west of Scarlet Point.
Fig. 191.—Bands of vesicles in the same sill.

There is, however, a peculiarity about the development of the vesicular structure in this sill which I have not observed anywhere else. If we examine the southern side of the crag near its eastern end we observe that the successive bands of vesicles are arranged in the same direction as the surface of contact with the underlying tuffs, precisely as they are ranged in dykes parallel to the bounding walls. So far the structure is quite normal. But, moving a few yards westwards, we find that the bands begin to curve, and, instead of following the contact surface, strike it first obliquely and then at right angles, until we have the structure shown in [Fig. 191]. The bands here vary from less than an inch to more than a foot in breadth, and where broadest assume a slaggy texture. I sought in vain for any evidence of subsequent disturbance such as might have truncated these parallel rows of vesicles and pushed the rock bodily over the tuffs. The perfect parallelism of the bands with the surface of the tuff at the east end, and the absence of all trace of a thrust-plane at the base of the sill, seem to show that, though the rows of vesicles were undoubtedly at first arranged parallel to the surfaces between which the intrusion took place, the mass, before completely consolidating and coming to rest, was ruptured, and a portion of it was driven onwards at right angles to its previous line of movement.