[158] Quart. Journ. Geol. Soc. vols. xlv. (1889), xlvi. (1890), xlix. (1893). In the first of these volumes Professor Judd offered a detailed criticism of my views as to the order of succession and history of the volcanic rocks of the Inner Hebrides. Subsequent investigation having entirely confirmed my main conclusions, it is not necessary to enter here upon matters of controversy. Reference, however, will be made in subsequent Chapters to some of the points in dispute.

In describing the geological history of a great series of rocks, chronological order is usually the most convenient method of treatment. Where, however, the rocks are of volcanic origin, and do not always precisely indicate their relative age, and where moreover the same kinds of rock may appear on widely-separated geological horizons, it is not always possible or desirable to adhere to the strict order of sequence. With this necessary latitude, I propose to follow the chronological succession from the older to the newer portions of the series. I shall treat first of the system of dykes, by which so large a part of Scotland and of the north of England and Ireland is traversed. Many of the dykes are undoubtedly among the youngest members of the volcanic series, and in no case has their age been as yet determined except relatively to the antiquity of the rocks which they traverse. They must, of course, be posterior to these rocks, and hence it would be quite logical to reserve them for discussion at the very end of the whole volcanic phenomena. My reason for taking them at the beginning will be apparent in the sequel. After the dykes, I shall describe the great volcanic plateaux which, in spite of vast denudation, still survive in extensive fragments in Antrim, the Inner Hebrides and the Faroe Islands. The eruptive bosses of basic rocks that have broken through the plateaux will next be discussed. An account will then be given of the protrusions of acid rocks which have disrupted these basic bosses. The last chapters will contain a sketch of the subsidences and dislocations which the basalt-plateaux have suffered, and of the denudation to which they have been subjected.

As has been explained in Chapter iii., the volcanic cycle of any district, during a given geological period, embraces the whole range of erupted products from the beginning to the end of a complete series of eruptions. Reference was made in Book I. to the remarkable variation in the character of the lavas successively poured out from the same volcanic reservoir during the continuance of a single cycle, and it was pointed out that Richthofen's law generally holds good that while the first eruptions may be of a basic or average and intermediate nature, those of succeeding intervals become progressively more acid, but are often found to return again at the close to thoroughly basic compounds.

This law is well illustrated by the volcanic history of Tertiary time in Britain. We shall find that the earliest eruptions of which the relative date is known consisted generally of basic lavas (dolerites and basalts), but including also more sparingly andesites, trachytes and rhyolites; that the oldest intrusive masses consisted of bosses, sills and dykes of dolerite and gabbro; that these intrusions were followed by others of a much more acid character—felsites, pitchstones, quartz-porphyries or rhyolites, granophyres and granites; that the latest lava is a somewhat acid rock, being a vitreous form of dacite; and that the most recent volcanic products of all are dykes of a thoroughly basic nature, like some of the earlier intruded masses.

CHAPTER XXXIV
THE SYSTEM OF DYKES IN THE TERTIARY VOLCANIC SERIES

Geographical Distribution—Two Types of Protrusion—Nature of Component Rocks—Hade—Breadth—Interruptions of Lateral Continuity—Length—Persistence of Mineral Characters.

If a geologist were asked to select that feature in the volcanic geology of the British Isles which, more than any other, marks this region off from the rest of the European area, he would probably choose the remarkable system of wall-like masses of erupted igneous rock, to which the old Saxon word "dykes" has been affixed. From the moors of eastern Yorkshire to the Perthshire Highlands, and from the basins of the Forth and Tay to the west of Donegal and the far headlands of the Hebrides, the country is ribbed across with these singular protrusions to such an extent that it may be regarded as a typical region for the study of the phenomena of dykes. That all the dykes in this wide tract of country are of Tertiary age cannot be maintained. It has been shown in previous Chapters that each of the great volcanic periods has had its system of dykes, even as far back as the time of the Lewisian Gneiss.

But when all the dykes which can reasonably be referred to older geological periods are excluded, there remains a large series which cannot be so referred, but which are connected together by various kinds of evidence into one great system that must be of late geological date, and can be assigned to no other than the Tertiary period in the volcanic history of Britain. As far back as the year 1861, when I first drew attention to this great system of dykes in connection with the progress of volcanic action in the country, I pointed out the grounds on which it seemed to me that these rocks belong to a comparatively recent geological period.[159] My own subsequent experience and the full details of structure collected by my colleagues of the Geological Survey in all parts of the country, have amply confirmed this view. The characters which link this great series of dykes together as one connected system of late geological date are briefly enumerated in the following list, and will be more fully discussed in later pages.

[159] Trans. Roy. Soc. Edin. vol. xxii. (1861), p. 650.

1. The prevalent tendency of the dykes to take a north-westerly course. There are exceptions to this normal trend, especially where the dykes are small and locally numerous; but it remains singularly characteristic over the whole region.