On a large scale two cast-iron cylinders are employed, instead of the glass or porcelain tube just referred to; the anterior one of which contains the chloride of aluminum, and the posterior one a tray holding the sodium, of which 10 or 12 lbs. are commonly operated on at once. These cylinders are united by means of a smaller intermediate one, filled with clean scraps of iron, which serve to separate iron, free hydrochloric acid, and chloride of sulphur, from the vapour of the chloride of aluminum, as it passes through them. During the passage of the vapour of the chloride this smaller cylinder, or tube, is kept heated to from 400° to 600° Fahr.; but the two other cylinders are only very gently heated, since the chloride is volatilised at a comparatively low temperature, and the reaction between it and the fused sodium, when once commenced, usually generates sufficient heat for the completion of the process.

Occasionally a mixture of the double chloride of aluminum and sodium, 40 parts; chloride of sodium 20 parts; fluor spar, 20 parts; each separately dried, powdered, and then blended together; sodium, in small pieces, 712 to 8 parts, are used instead of the last.

It is likewise made from a mixture of cryolite and fused chloride of potassium, of each, in powder, 5 parts; sodium, 2 parts; a cast-iron crucible being employed; the resulting minute globules being collected and fused to a button under a layer of the double chloride of aluminum and sodium.

Prop., &c. Aluminum, when quite pure, closely approaches silver in appearance, except in being rather less white and lustrous than that metal. Ordinary specimens, called pure, have a slight bluish tint or tin-white colour, with a perfect lustre, but far inferior to that of pure silver. Sp. gr. 2·56, which by hammering may be raised to 2·67. It is both ductile and malleable; fuses at a temperature between the melting-points of zinc and silver; is not affected by either damp or dry air, or by oxygen at ordinary temperatures, or by water whether cold or boiling; even steam, at a red heat, is only slowly decomposed by it. It is not acted on by nitric acid, however concentrated, unless boiling, and then very slowly; nor by dilute sulphuric acid, sulphuretted hydrogen, and the sulphides, or even the fused hydrates of the alkalies. It is, however, readily dissolved by hydrochloric acid, with the evolution of hydrogen, even in the cold; and by a concentrated mixture of nitric and sulphuric acid. It is feebly magnetic, conducts electricity about eight times better than iron, and is more electro-negative than zinc. Commercial specimens, owing to the presence of iron and silicon, and often zinc, usually slowly tarnish in damp air, and possess the other properties described above in a somewhat diminished degree.

In a finely divided state, particularly in the state of powder or minute scales in which it was originally obtained, when heated to redness, it catches fire and burns with great rapidity in the air, and in oxygen gas with intense brilliancy, the product in each case being alumina.

Aluminum unites with the other metals, forming ALLOYS, of which some promise to be of great value in the arts. An alloy of 100 parts of aluminum with 5 parts of silver may be worked like the pure metal, but is harder and susceptible of a finer polish, whilst its property of not being affected by sulphuretted hydrogen and acids remains unimpaired; even 3% of silver is said to be sufficient to impart to it the full brilliance and colour of pure silver. An alloy containing 10% of gold is softer and scarcely so malleable as the pure metal. With 8% of iron, or 10% of copper, it still remains tough and malleable; but a larger proportion of either of these metals renders it brittle.

The presence of 2 or 3% of zinc destroys its ductility and malleability, and also impairs its colour and lustre; whilst less than even 14% of bismuth renders it brittle in a high degree. Small quantities of aluminum added to other metals change their properties in a very remarkable manner. Thus, copper alloyed with 10%; of aluminum has the colour and brilliancy of gold, is harder than bronze, very malleable, and may be worked at high temperatures easier than the best varieties of iron; and with 20% is quite white, and closely resembles silver. With more than 12% of aluminum the alloy is harder, but brittle. The alloy formed of 100 parts of silver with 5 parts of aluminum is as hard as the silver of our coinage, whilst the other properties of the latter metal remain unaltered.

Uses. The valuable properties of aluminum adapt it to numerous applications in the arts and everyday life. Hitherto these have been very limited, owing to its comparatively high price; which, notwithstanding it has fallen considerably, is still sufficient to prevent its general or even extensive application. The ‘eagles’ of the French army have been made of it, as well as certain articles of jewelry, plate, &c., as brooches, bracelets, chains, spoons, and other ornamental and useful objects. Owing to its low sp. gr., it has been used as a suitable material for the minute decimal weights of chemists, for military helmets, trumpets, &c. A few cornet-à-pistons, for which its lightness and sonorousness admirably adapt it, have actually been made of it. Its power of resisting oxygen, sulphuretted hydrogen, moisture, &c., would render it invaluable as a coating to metals, particularly iron and lead, to protect them from rust or corrosion, did not its price intervene. As an internal coating for water-pipes, cisterns, &c., no other substance, except gold and platinum, is so well adapted. In chemistry, capsules, tubes, &c., either made of or coated with it, may be often advantageously substituted for those of platinum.

In addition to what has been said above, it may be observed that, in preparing aluminum, the chief care should be to avoid accidents or failure by the employment of too high a temperature, and to avoid the product being contaminated with other metals or with carbon. To ensure the purity of the metal is a matter of the greatest difficulty, owing to the facility with which foreign matters are taken up, during the process, from the materials of which the apparatus is composed; and from the substances from which it is prepared being seldom absolutely pure. Indeed, it is not too much to assert that chemically pure aluminum has not yet been obtained; and that even a very close approximation to it is of very rare occurrence. Whenever a copper boat is used to hold the sodium, the product is always contaminated with copper. Chloride of aluminum always contains some of the chlorides of iron and silicon, both of which are volatile, and probably takes up a further portion from the porcelain or earthenware used to form the apparatus. Sodium also is seldom uncontaminated with carbon or some compound of it; in which case, and likewise when it is not carefully freed from the naphtha in which it has been preserved, the product always contains carbon. The crucible, whether of porcelain or iron, in which the final fusion is made, also contributes to contaminate the metal. Hence the inferior whiteness and brilliancy of commercial specimens of aluminum; a metal which, in its absolutely pure state, may be

reasonably inferred to be as superior in the above respects to silver as silver is to tin. Commercial aluminum contains from 88 to 94 per cent. only of pure aluminum, and from 1 to 4 per cent. of iron, 12 to 3 per cent. of silicon, and from 1 to 6 per cent. of copper.