P represents a flint-glass prism supported on the cast-iron tripod F, and retained in its place by the spring c. At the end of the tube A nearest the prism is a lens, placed at the distance of its focus for parallel rays from a vertical slit at the other end of the tube. The width of the slit can be regulated by means of the screw e. One half of this slit is covered by a small rectangular prism designed to reflect the rays proceeding from the source of light D, down the axis of the tube, whilst the rays from the source of light E pass directly down the tube. By this arrangement the observer stationed at the end of the telescope B is able to compare the spectra of both lights, which are seen one above the other, and he can at once decide whether their lines coincide or differ. a and b are screws for adjusting the axis of the telescope so as to bring any part of the slit at e into the centre of the field of vision.

The telescope as well as the tube C is moveable in a horizontal plane around the axis of the tripod. The tube C contains a lens at the end next to the prism, and at the other end is a scale formed by transparent lines on an opaque ground; it is provided with a levelling screw, d. When the telescope has been properly adjusted to the examination of the spectrum, the tube C is moved until it is placed at such an angle with the telescope and the face of the prism, that when a light is transmitted through the scale the image of this scale is reflected into the telescope from the face of the prism nearest the observer. This image is rendered perfectly distinct by pushing in the tube which holds the scale nearer to the lens in C, or withdrawing it to a greater distance, as may be required. The reflected lines of the scale can then be employed for reading off the position of the dark or bright lines of the spectrum, as both will appear simultaneously overlapping each other in the field of the telescope.

By turning the tube C round upon the axis of the tripod any particular line of the scale can be brought to coincidence with any desired line of the spectrum. Stray light is excluded by covering the stand, the prism, and the ends of the tube adjoining it with a loose black cloth. The dispersive power upon the spectrum may be much increased by using several prisms instead of one. Kirchkoff used four prisms in his experiments upon the solar spectrum. Great care must be observed in placing the prisms; the refracting edge of each prism must be exactly vertical, and the position of minimum deviation for the rays to be observed must be obtained.

The preceding remarks have reference to the spectra produced when the vapours of certain elements are evolved in flame derived from artificial sources. When, however, solar light is examined by the spectroscope, results entirely the reverse follow.

If a beam of sunlight be sent through the slit of the spectroscope, the prismatic image is seen to be intersected by a number of fine black lines, varying in thickness and intensity, and invariably occupying the same relative position in the solar spectrum. These lines were first noticed so far back as 1815 by a German optician, Frauenhofer, after whom they were named Frauenhofer’s lines; but it was not until the invention of the spectroscope that the origin of these lines could be accounted for. By so arranging the instrument as to cause the spectrum from a solar beam, and that from a metallic element, to fall upon the field of the telescope, so that the solar spectrum shall be above the other, both being perfectly parallel; the bright bands or lines of the metal are all seen to be continued in the dark solar lines, for, as may be seen by consulting the plate of the different spectra, several lines are sometimes produced by one element alone. If, for instance, the sodium and solar spectra are thus compared, the bright yellow sodium line will be found to

agree exactly not only in position, but also in intensity and breadth, with one of the dark solar ones. And the same thing occurs when the comparison is made with many of the other metals, the bright lines in the respective spectra furnished by them are each coincident with a particular dark line in the solar spectrum, and from every dark line in the latter a corresponding bright one can be found amongst the spectra of the metals. From what has just been stated, the inference seems irresistible that this coincidence between the dark solar lines and the bright lines of the metals cannot be accidental, but must be due to some intimate connection between them, and that this is the case can be proved beyond refutation by a simple experiment, in which the bright metallic lines can be changed into dark ones, corresponding in every particular with those of the solar spectrum. Thus the bright yellow soda lines coincident with Frauenhofer’s lines can be converted into dark ones by allowing the rays from a strong source of white light to pass through a flame coloured with sodium, and then making them fall upon the slit of the spectroscope. If we examine the spectrum obtained by this means, instead of seeing the usual bright double band upon a black ground, there will be presented to our sight a double dark line, corresponding exactly with the position and width of the sodium line, and instead of the black ground there will be a continuous spectrum of white light, as in the solar spectrum.

The explanation of this remarkable phenomenon is due to Kirchkoff, and is as follows:—When any substance is heated sufficiently to render it luminous, rays of a certain and definite degree of refrangibility are given out by it; whilst the same substance has also the power of absorbing rays of this identical refrangibility. In the above experiment, therefore, the yellow flame absorbed the same kind of light as it gave out, a corresponding decrease of intensity in its own particular position in the spectrum occurred, and a dark line showed itself in consequence.

In the same manner and under similar conditions the spectra of many other substances have been reversed.

Reasoning on these facts, Kirchkoff has been able to account for the presence in the solar spectrum of Frauenhofer’s dark lines. He supposes that in the luminous atmosphere surrounding the sun the vapours of various metals are present, each of which would give its characteristic system of bright lines; but behind this incandescent atmosphere containing metallic vapour is the still more intensely heated solid or liquid nucleus of the sun, which emits a brilliant continuous spectrum, containing rays of all degrees of refrangibility.

When the light of this intensely heated nucleus is transmitted through the incandescent photosphere of the sun, the bright lines which would be produced by the photosphere are reversed, and Frauenhofer’s dark lines are only the reversed bright lines which would be visible if the intensely heated nucleus were no longer there.