Obs. The above are the processes usually adopted, on the large scale, in this country.
3. (M. Mollerat’s process—without distillation.) Pure commercial acetate of soda, in coarse powder, is placed in a hard glazed stoneware or glass pan or receiver set in a cool situation, and 35% or 36% of concentrated sulphuric acid, of the sp. gr. 1·843, added, in such a manner that the acid may flow under the powder, and little heat be generated by the operation; the whole is then allowed to remain in contact (covered) for some hours, when crystalline grains of sulphate of soda are found covering the bottom and sides of the vessel, and hydrated acetic acid, partly liquid and partly in crystals, the upper portion. The temperature being now slightly raised to a point just sufficient to cause the liquefaction of the crystals of acetic acid (i.e., to from 62° to 65° Fahr.), the fluid is poured off, and a very small quantity of pure acetate of lime added to it gradually, until it ceases to yield any trace of free sulphuric acid on evaporation. After sufficient repose it is carefully decanted for use. An excellent commercial strong acetic acid is thus obtained, without distillation, owing to the insolubility of sulphate of soda in acetic acid; and from which glacial acid may be procured by refrigeration. If, however, the process be badly managed, or the proportions of the ingredients be not carefully observed, the product will be contaminated with either a little sulphuric acid or saline matter. It is also important to the success of this process that it be performed in a cool apartment, and in well-cooled vessels. Perfectly pure acetic acid may easily be obtained by rectification from this acid. The above plan of superseding a troublesome distillation is one of the greatest improvements yet introduced into the manufacture of acetic acid.
4. (Liebig’s process.) Pure acetate of soda, thoroughly dried and finely powdered, 3 parts, is placed in a capacious retort, and pure concentrated sulphuric acid, 9·7 parts, poured over it through the tubulature. One eighth of the acetic acid passes over by the heat developed by the reaction of the ingredients. The heat of a sand bath is next applied and continued until the contents of the retort become quite liquid. The distillate, carefully rectified, yields two parts of pure acid, containing only 20 per cent. of water. On exposing the latter portion which comes over in
a closed vessel to a temperature below 40° Fahr., crystals of hydrated acetic acid are deposited. The weaker, or liquid portion, being poured off, the crystals are again melted and re-crystallised by cooling. The crystals of the last operation, separated from the liquid, and carefully drained in a cool and closed vessel, are perfectly pure hydrated acetic acid.
Obs. The above is an excellent process for obtaining a chemically pure acid. The excess of sulphuric acid left from the process may be recovered by distillation; or the whole residuum may be employed in a second distillation with fresh acetate.
(C.) A Liebig’s Condenser. (The other reference letters are self-explanatory.)
Although a retort is recommended by Liebig for the distillation, and is usually adopted, on the small scale, for the purpose, a flask closed by a cork perforated by two tubes, as exhibited by the engr., will be found more convenient and safe; as the product is then less likely to be contaminated by the ‘spirting’ of the ingredients over the brim of the vessel. The heat of a diffused gas-flame may also be often advantageously substituted for a sand bath.
b. From ACETATE OF POTASH:—
1. Acetate of potash (fused and powdered) is placed in a still, or other suitable vessel, and 50% of the strongest sulphuric acid (‘oil of vitriol’ of fully 1·84 sp. gr.) being added, the mixture is distilled to dryness, as before. The product is 50 to 51% of the weight of the acetate employed, with a sp. gr. of about 1·0735 to 1·074, containing about 66% of anhydrous acetic acid, or nearly 80% of ordinary glacial acid. By rectification from a little dried acetate of lead a perfectly pure acid of almost any strength may be obtained. The ingredients are nearly in equiv. proportions.