Poisoning from acetic acid is rare. When concentrated, it is capable, by its corrosive and solvent action, of perforating the coats of the stomach and digestive canal; and it colours the mucus of these organs by the chemical action it exerts upon the blood. Vinegar in an excessive quantity acts in a similar way, but in a slighter degree. The treatment and antidotes are similar to those directed in cases of poisoning by the other acids. See Poisons.

Duty, Excise, &c. See Vinegar.

Gen. commentary. Acetic acid, on the large scale, is principally prepared from acetate of soda, which yields by a comparatively inexpensive, and not a difficult operation, an acid sufficiently strong and pure for commercial purposes, without the necessity of rectification. In this process shallow vessels of wood or of copper formed without rivets or solder (except silver solder) in those parts exposed to the action of the acid, are generally employed for the purpose of the distillation. A coil of drawn

copper pipe, heated by steam having a pressure of 30 to 40 lbs. to the inch, traverses the bottom of the apparatus, to impart the necessary heat. The refrigerator consists of well-cooled earthenware, Berlin ware, or glass vessels; and the adopter pipe is also of the same materials. Another common form, which is even still more convenient, is a stout copper still, furnished with a cast-iron jacket to hold high-pressure steam, the usual refrigeratory being employed. In a few instances the space between the still and jacket is filled with sand, oil, tallow, or fusible metal; in which case the apparatus is set in brickwork, and heated by a naked fire. Stills of earthenware are also frequently employed; and even worms and condensers of silver, or silvered copper, are sometimes used, and with advantage. With a leaden worm the product is always contaminated with a little of that metal; the efforts of the manufacturer to the contrary, by the exclusion of air, and by rejecting the first and last portions of the distillate, only lessening and not preventing this evil. A lute (if any) composed of linseed meal and water, with or without a little powdered plaster of paris, may be employed; but flat bands and short tubes of well-seasoned vulcanised india rubber are infinitely more convenient and efficacious. The ingredients being placed in the still, and well but hastily stirred together with a wooden spatula, the head is luted on, and the distillation soon afterwards commenced. The chief care now should be to increase the heat gradually as the distillation proceeds; and when a steam-heat is not used, to carefully avoid over-firing, particularly towards the close of the operation. A little acetic ether is added by some manufacturers. In this way 4 lbs. of acid of the sp. gr. 1·050, is obtained for every 3 lbs. of acetate of soda employed. Should rectification be had recourse to, the addition of about 2 or 3% of bichromate of potash, peroxide of manganese, or red oxide of lead, will remove empyreuma, if present. The first of these substances is the most effective; the power of the others being in the order in which they are printed. In distilling the weaker acids and vinegars, it is found useful to add from 25 to 30% of chloride of sodium, which, by raising the boiling-point of the liquid, allows the acid the more freely to pass over (Stein); but this addition proves disadvantageous when any sulphuric acid is present, in which case sulphate of soda may be employed instead. If this addition be not made, the whole of the acid cannot be obtained without distillation to dryness, and the generation of empyreuma.

On the small scale, glass retorts are usually directed to be used, but glass alembics or flasks are more convenient and safe, as already noticed. In the preparation of the pure acid, care should be taken that the acetate of soda does not contain common salt, as the carbonate of soda prepared by calcination, and frequently used to form the acetate, is generally contaminated with it, and yields up its hydrochloric acid or chlorine during the process of distillation, thus vitiating the product. In all the methods given the product becomes more concentrated in proportion to the dryness of the acetate and the strength of the oil of vitriol or muriatic acid employed. By using the one dry, and the other concentrated, glacial acid may always be obtained by collecting separately the last two fifths that come over, and submitting this to refrigeration.

According to Melsens, pure GLACIAL ACETIC ACID is most advantageously obtained by distilling pure and dry acetate of potash with an excess of strong and moderately pure acetic acid, rejecting that which first passes over.

Acetate of soda may be safely dried at a temperature of 400° to 450°, provided care be taken to avoid ignition from contact with sparks. A less heat is, however, quite sufficient to drive off the whole of its water of crystallisation. It is known to be dry by its assuming the appearance of a smooth oily liquid whilst hot. If, whilst heated, it emits fumes, it is suffering decomposition. The same applies to the other commercial acetates. Crystallised acetate of soda loses about 25ths of its weight by thorough drying.

When acetate of soda and sulphuric acid are the ingredients employed in the production of acetic acid, sulphate of soda is formed, which, in the large way, the chemist returns to the manufacturer of acetate of soda (i. e. to the pyroligneous acid maker), who employs it in the decomposition of fresh acetate or pyrolignite of lime. In this way the same soda-salt is employed over and over again, acting merely as the vehicle for the separation of the crude acetic acid in the solid form, and its easy and cheap transportation from one point to another. This ingenious method of mutual assistance resulting from the application of chemical science to provide for the wants of everyday life, offers some explanation of the extraordinarily low price at which acetic acid may now be purchased.

The acetic acid of commerce (pure pyroligneous acid) is almost wholly obtained from the acetates of soda and lime. The principal supply of crude acetate (pyrolignite) of soda is from America, Norway, and Sweden; but much is also obtained from our home manufactories. See Acetification, Acetimetry, Fermentation, Pyroligneous Acid, Sodium, (Acetate of), Vinegar, &c.

More recently, acetic acid has been obtained by decomposing with hydrochloric acid the double salt of chloride of calcium and acetate of lime, mentioned by Fritzsche (‘Ann. de Poggend,’ xxviii, 123). For this purpose, solutions of acetate of lime and chloride of calcium are mixed and evaporated, the combined salts readily crystallising in large needles. These are freed from the mother-liquor and distilled with common muriatic acid.