In the absence of any a priori knowledge of the actual clustering of the stars in space, Herschel chose the former of these two hypotheses; that is, he treated the apparent density of the stars on any particular part of the sky as a measure of the depth to which the sidereal systems extended in that direction, and interpreted from this point of view the results of a vast series of observations. He used a 20-foot telescope so arranged that he could see with it a circular portion of the sky 15′ in diameter (one-quarter the area of the sun or full moon), turned the telescope to different parts of the sky, and counted the stars visible in each case. To avoid accidental irregularities he usually took the average of several neighbouring fields, and published in 1785 the results of gauges thus made in 683[156] regions, while he subsequently added 400 others which he did not think it necessary to publish. Whereas in some parts of the sky he could see on an average only one star at a time, in others nearly 600 were visible, and he estimated that on one occasion about 116,000 stars passed through the field of view of his telescope in a quarter of an hour. The general result was, as rough naked-eye observation suggests, that stars are most plentiful in and near the Milky Way and least so in the parts of the sky most remote from it. Now the Milky Way forms on the sky an ill-defined band never deviating much from a great circle (sometimes called the galactic circle); so that on Herschel’s hypothesis the space occupied by the stars is shaped roughly like a disc or grindstone, of which according to his figures the diameter is about five times the thickness. Further, the Milky Way is during part of its length divided into two branches, the space between the two branches being comparatively free of stars. Corresponding to this subdivision there has therefore to be assumed a cleft in the “grindstone.”
This “grindstone” theory of the universe had been suggested in 1750 by Thomas Wright (1711-1786) in his Theory of the Universe, and again by Kant five years later; but neither had attempted, like Herschel, to collect numerical data and to work out consistently and in detail the consequences of the fundamental hypothesis.
That the assumption of uniform distribution of stars in space could not be true in detail was evident to Herschel from the beginning. A star cluster, for example, in which many thousands of faint stars are collected together in a very small space on the sky, would have to be interpreted as representing a long projection or spike full of stars, extending far beyond the limits of the adjoining portions of the sidereal system, and pointing directly away from the position occupied by the solar system. In the same way certain regions in the sky which are found to be bare of stars would have to be regarded as tunnels through the stellar system. That even one or two such spikes or tunnels should exist would be improbable enough, but as star clusters were known in considerable numbers before Herschel began his work, and were discovered by him in hundreds, it was impossible to explain their existence on this hypothesis, and it became necessary to assume that a star cluster occupied a region of space in which stars were really closer together than elsewhere.
Moreover further study of the arrangement of the stars, particularly of those in the Milky Way, led Herschel gradually to the belief that his original assumption was a wider departure from the truth than he had at first supposed; and in 1811, nearly 30 years after he had begun star-gauging, he admitted a definite change of opinion:—
“I must freely confess that by continuing my sweeps of the heavens my opinion of the arrangement of the stars ... has undergone a gradual change.... For instance, an equal scattering of the stars may be admitted in certain calculations; but when we examine the Milky Way, or the closely compressed clusters of stars of which my catalogues have recorded so many instances, this supposed equality of scattering must be given up.”
The method of star-gauging was intended primarily to give information as to the limits of the sidereal system—or the visible portions of it. Side by side with this method Herschel constantly made use of the brightness of a star as a probable test of nearness. If two stars give out actually the same amount of light, then that one which is nearer to us will appear the brighter; and on the assumption that no light is absorbed or stopped in its passage through space, the apparent brightness of the two stars will be inversely as the square of their respective distances. Hence, if we receive nine times as much light from one star as from another, and if it is assumed that this difference is merely due to difference of distance, then the first star is three times as far off as the second, and so on.
That the stars as a whole give out the same amount of light, so that the difference in their apparent brightness is due to distance only, is an assumption of the same general character as that of equal distribution. There must necessarily be many exceptions, but, in default of more exact knowledge, it affords a rough-and-ready method of estimating with some degree of probability relative distances of stars.
To apply this method it was necessary to have some means of comparing the amount of light received from different stars. This Herschel effected by using telescopes of different sizes. If the same star is observed with two reflecting telescopes of the same construction but of different sizes, then the light transmitted by the telescope to the eye is proportional to the area of the mirror which collects the light, and hence to the square of the diameter of the mirror. Hence the apparent brightness of a star as viewed through a telescope is proportional on the one hand to the inverse square of the distance, and on the other to the square of the diameter of the mirror of the telescope; hence the distance of the star is, as it were, exactly counterbalanced by the diameter of the mirror of the telescope. For example, if one star viewed in a telescope with an eight-inch mirror and another viewed in the great telescope with a four-foot mirror appear equally bright, then the second star is—on the fundamental assumption—six times as far off.
In the same way the size of the mirror necessary to make a star just visible was used by Herschel as a measure of the distance of the star, and it was in this sense that he constantly referred to the “space-penetrating power” of his telescope. On this assumption he estimated the faintest stars visible to the naked eye to be about twelve times as remote as one of the brightest stars, such as Arcturus, while Arcturus if removed to 900 times its present distance would just be visible in the 20-foot telescope which he commonly used, and the 40-foot would penetrate about twice as far into space.
Towards the end of his life (1817) Herschel made an attempt to compare statistically his two assumptions of uniform distribution in space and of uniform actual brightness, by counting the number of stars of each degree of apparent brightness and comparing them with the numbers that would result from uniform distribution in space if apparent brightness depended only on distance. The inquiry only extended as far as stars visible to the naked eye and to the brighter of the telescopic stars, and indicated the existence of an excess of the fainter stars of these classes, so that either these stars are more closely packed in space than the brighter ones, or they are in reality smaller or less luminous than the others; but no definite conclusions as to the arrangement of the stars were drawn.