In the case of the particular problem of the determination of the line of apses, Hipparchus made use of another method, and his skill is shewn in a striking manner by his recognition that both the eccentricity and position of the apse line could be determined from a knowledge of the lengths of two of the seasons of the year, i.e. of the intervals into which the year is divided by the solstices and the equinoxes ([§ 11]). By means of his own observations, and of others made by his predecessors, he ascertained the length of the spring (from the vernal equinox to the summer solstice) to be 94 days, and that of the summer (summer solstice to autumnal equinox) to be 92-1∕2 days, the length of the year being 365-1∕4 days. As the sun moves in each season through the same angular distance, a right angle, and as the spring and summer make together more than half the year, and the spring is longer than the summer, it follows that the sun must, on the whole, be moving more slowly during the spring than in any other season, and that it must therefore pass through the apogee in the spring. If, therefore, in fig. 18, we draw two perpendicular lines Q E S, P E R to represent the directions of the sun at the solstices and equinoxes, P corresponding to the vernal equinox and R to the autumnal equinox, the apogee must lie at some point A between P and Q. So much can be seen without any mathematics: the actual calculation of the position of A and of the eccentricity is a matter of some complexity. The angle P E A was found to be about 65°, so that the sun would pass through its apogee about the beginning of June; and the eccentricity was estimated at 1∕24.

The motion being thus represented geometrically, it became merely a matter of not very difficult calculation to construct a table from which the position of the sun for any day in the year could be easily deduced. This was done by computing the so-called equation of the centre, the angle C S E of fig. 17, which is the excess of the actual longitude of the sun over the longitude which it would have had if moving uniformly.

Owing to the imperfection of the observations used (Hipparchus estimated that the times of the equinoxes and solstices could only be relied upon to within about half a day), the actual results obtained were not, according to modern ideas, very accurate, but the theory represented the sun’s motion with an accuracy about as great as that of the observations. It is worth noticing that with the same theory, but with an improved value of the eccentricity, the motion of the sun can be represented so accurately that the error never exceeds about 1′, a quantity insensible to the naked eye.

The theory of Hipparchus represents the variations in the distance of the sun with much less accuracy, and whereas in fact the angular diameter of the sun varies by about 1∕30th part of itself, or by about 1′ in the course of the year, this variation according to Hipparchus should be about twice as great. But this error would also have been quite imperceptible with his instruments.

Fig. 19.—The epicycle and the deferent.

Hipparchus saw that the motion of the sun could equally well be represented by the other device suggested by Apollonius, the epicycle. The body the motion of which is to be represented is supposed to move uniformly round the circumference of one circle, called the epicycle, the centre of which in turn moves on another circle called the deferent. It is in fact evident that if a circle equal to the eccentric, but with its centre at E (fig. 19), be taken as the deferent, and if S′ be taken on this so that E S′ is parallel to C S, then S′ S is parallel and equal to E C; and that therefore the sun S, moving uniformly on the eccentric, may equally well be regarded as lying on a circle of radius S′ S, the centre S′ of which moves on the deferent. The two constructions lead in fact in this particular problem to exactly the same result, and Hipparchus chose the eccentric as being the simpler.

40. The motion of the moon being much more complicated than that of the sun has always presented difficulties to astronomers,[23] and Hipparchus required for it a more elaborate construction. Some further description of the moon’s motion is, however, necessary before discussing his theory.

We have already spoken (chapter I., [§ 16]) of the lunar month as the period during which the moon returns to the same position with respect to the sun; more precisely this period (about 29-1∕2 days) is spoken of as a lunation or synodic month: as, however, the sun moves eastward on the celestial sphere like the moon but more slowly, the moon returns to the same position with respect to the stars in a somewhat shorter time; this period (about 27 days 8 hours) is known as the sidereal month. Again, the moon’s path on the celestial sphere is slightly inclined to the ecliptic, and may be regarded approximately as a great circle cutting the ecliptic in two nodes, at an angle which Hipparchus was probably the first to fix definitely at about 5°. Moreover, the moon’s path is always changing in such a way that, the inclination to the ecliptic remaining nearly constant (but cf. chapter V., [§ 111]), the nodes move slowly backwards (from east to west) along the ecliptic, performing a complete revolution in about 19 years. It is therefore convenient to give a special name, the draconitic month,[24] to the period (about 27 days 5 hours) during which the moon returns to the same position with respect to the nodes.