By means of a system of this kind, worked out with great care, and evidently at the cost of enormous labour, Ptolemy was able to represent with very fair exactitude the motions of the planets, as given by the observations in his possession.

It has been pointed out by modern critics, as well as by some mediaeval writers, that the use of the equant (which played also a small part in Ptolemy’s lunar theory) was a violation of the principle of employing only uniform circular motions, on which the systems of Hipparchus and Ptolemy were supposed to be based, and that Ptolemy himself appeared unconscious of his inconsistency. It may, however, fairly be doubted whether Hipparchus or Ptolemy ever had an abstract belief in the exclusive virtue of such motions, except as a convenient and easily intelligible way of representing certain more complicated motions, and it is difficult to conceive that Hipparchus would have scrupled any more than his great follower, in using an equant to represent an irregular motion, if he had found that the motion was thereby represented with accuracy. The criticism appears to me in fact to be an anachronism. The earlier Greeks, whose astronomy was speculative rather than scientific, and again many astronomers of the Middle Ages, felt that it was on a priori grounds necessary to represent the “perfection” of the heavenly motions by the most “perfect” or regular of geometrical schemes; so that it is highly probable that Pythagoras or Plato, or even Aristotle, would have objected, and certain that the astronomers of the 14th and 15th centuries ought to have objected (as some of them actually did), to this innovation of Ptolemy’s. But there seems no good reason for attributing this a priori attitude to the later scientific Greek astronomers (cf. also [§§ 38], 47).[34]

It will be noticed that nothing has been said as to the actual distances of the planets, and in fact the apparent motions are unaffected by any alteration in the scale on which deferent and epicycle are constructed, provided that both are altered proportionally. Ptolemy expressly states that he had no means of estimating numerically the distances of the planets, or even of knowing the order of the distance of the several planets. He followed tradition in accepting conjecturally rapidity of motion as a test of nearness, and placed Mars, Jupiter, Saturn (which perform the circuit of the celestial sphere in about 2, 12, and 29 years respectively) beyond the sun in that order. As Venus and Mercury accompany the sun, and may therefore be regarded as on the average performing their revolutions in a year, the test to some extent failed in their case, but Ptolemy again accepted the opinion of the “ancient mathematicians” (i.e. probably the Chaldaeans) that Mercury and Venus lie between the sun and moon, Mercury being the nearer to us. (Cf. chapter I., § 15.)

52. There has been much difference of opinion among astronomers as to the merits of Ptolemy. Throughout the Middle Ages his authority was regarded as almost final on astronomical matters, except where it was outweighed by the even greater authority assigned to Aristotle. Modern criticism has made clear, a fact which indeed he never conceals, that his work is to a large extent based on that of Hipparchus; and that his observations, if not actually fictitious, were at any rate in most cases poor. On the other hand his work shews clearly that he was an accomplished and original mathematician.[35] The most important of his positive contributions to astronomy were the discovery of evection and his planetary theory, but we ought probably to rank above these, important as they are, the services which he rendered by preserving and developing the great ideas of Hipparchus—ideas which the other astronomers of the time were probably incapable of appreciating, and which might easily have been lost to us if they had not been embodied in the Almagest.

53. The history of Greek astronomy practically ceases with Ptolemy. The practice of observation died out so completely that only eight observations are known to have been made during the eight and a half centuries which separate him from Albategnius (chapter III., [§ 59]). The only Greek writers after Ptolemy’s time are compilers and commentators, such as Theon (fl. A.D. 365), to none of whom original ideas of any importance can be attributed. The murder of his daughter Hypatia (A.D. 415), herself also a writer on astronomy, marks an epoch in the decay of the Alexandrine school; and the end came in A.D. 640, when Alexandria was captured by the Arabs.[36]

54. It remains to attempt to estimate briefly the value of the contributions to astronomy made by the Greeks and of their method of investigation. It is obviously unreasonable to expect to find a brief formula which will characterise the scientific attitude of a series of astronomers whose lives extend over a period of eight centuries; and it is futile to explain the inferiority of Greek astronomy to our own on some such ground as that they had not discovered the method of induction, that they were not careful enough to obtain facts, or even that their ideas were not clear. In habits of thought and scientific aims the contrast between Pythagoras and Hipparchus is probably greater than that between Hipparchus on the one hand and Coppernicus or even Newton on the other, while it is not unfair to say that the fanciful ideas which pervade the work of even so great a discoverer as Kepler (chapter VII., [§§ 144], 151) place his scientific method in some respects behind that of his great Greek predecessor.

The Greeks inherited from their predecessors a number of observations, many of them executed with considerable accuracy, which were nearly sufficient for the requirements of practical life, but in the matter of astronomical theory and speculation, in which their best thinkers were very much more interested than in the detailed facts, they received virtually a blank sheet on which they had to write (at first with indifferent success) their speculative ideas. A considerable interval of time was obviously necessary to bridge over the gulf separating such data as the eclipse observations of the Chaldaeans from such ideas as the harmonical spheres of Pythagoras; and the necessary theoretical structure could not be erected without the use of mathematical methods which had gradually to be invented. That the Greeks, particularly in early times, paid little attention to making observations, is true enough, but it may fairly be doubted whether the collection of fresh material for observations would really have carried astronomy much beyond the point reached by the Chaldaean observers. When once speculative ideas, made definite by the aid of geometry, had been sufficiently developed to be capable of comparison with observation, rapid progress was made. The Greek astronomers of the scientific period, such as Aristarchus, Eratosthenes, and above all Hipparchus, appear moreover to have followed in their researches the method which has always been fruitful in physical science—namely, to frame provisional hypotheses, to deduce their mathematical consequences, and to compare these with the results of observation. There are few better illustrations of genuine scientific caution than the way in which Hipparchus, having tested the planetary theories handed down to him and having discovered their insufficiency, deliberately abstained from building up a new theory on data which he knew to be insufficient, and patiently collected fresh material, never to be used by himself, that some future astronomer might thereby be able to arrive at an improved theory.

Of positive additions to our astronomical knowledge made by the Greeks the most striking in some ways is the discovery of the approximately spherical form of the earth, a result which later work has only slightly modified. But their explanation of the chief motions of the solar system and their resolution of them into a comparatively small number of simpler motions was, in reality, a far more important contribution, though the Greek epicyclic scheme has been so remodelled, that at first sight it is difficult to recognise the relation between it and our modern views. The subsequent history will, however, show how completely each stage in the progress of astronomical science has depended on those that preceded.

When we study the great conflict in the time of Coppernicus between the ancient and modern ideas, our sympathies naturally go out towards those who supported the latter, which are now known to be more accurate, and we are apt to forget that those who then spoke in the name of the ancient astronomy and quoted Ptolemy were indeed believers in the doctrines which they had derived from the Greeks, but that their methods of thought, their frequent refusal to face facts, and their appeals to authority, were all entirely foreign to the spirit of the great men whose disciples they believed themselves to be.