The actual details of the epicycles employed are of no great interest now, but it may be worth while to notice that for the motions of the moon, earth, and five other planets Coppernicus required altogether 34 circles, viz. four for the moon, three for the earth, seven for Mercury (the motion of which is peculiarly irregular), and five for each of the other planets; this number being a good deal less than that required in most versions of Ptolemy’s system: Fracastor (chapter III., [§ 69]), for example, writing in 1538, required 79 spheres, of which six were required for the fixed stars.

90. The planetary theory of Coppernicus necessarily suffered from one of the essential defects of the system of epicycles. It is, in fact, always possible to choose a system of epicycles in such a way as to make either the direction of any body or its distance vary in any required manner, but not to satisfy both requirements at once. In the case of the motion of the moon round the earth, or of the earth round the sun, cases in which variations in distance could not readily be observed, epicycles might therefore be expected to give a satisfactory result, at any rate until methods of observation were sufficiently improved to measure with some accuracy the apparent sizes of the sun and moon, and so check the variations in their distances. But any variation in the distance of the earth from the sun would affect not merely the distance, but also the direction in which a planet would be seen; in the figure, for example, when the planet is at P and the sun at S, the apparent position of the planet, as seen from the earth, will be different according as the earth is at E or E′. Hence the epicycles and eccentrics of Coppernicus, which had to be adjusted in such a way that they necessarily involved incorrect values of the distances between the sun and earth, gave rise to corresponding errors in the observed places of the planets. The observations which Coppernicus used were hardly extensive or accurate enough to show this discrepancy clearly; but a crucial test was thus virtually suggested by means of which, when further observations of the planets had been made, a decision could be taken between an epicyclic representation of the motion of the planets and some other geometrical scheme.

Fig. 49.—The alteration in a planet’s apparent position due to an alteration in the earth’s distance from the sun.

91. The merits of Coppernicus are so great, and the part which he played in the overthrow of the Ptolemaic system is so conspicuous, that we are sometimes liable to forget that, so far from rejecting the epicycles and eccentrics of the Greeks, he used no other geometrical devices, and was even a more orthodox “epicyclist” than Ptolemy himself, as he rejected the equants of the latter.[57] Milton’s famous description (Par. Lost, VIII. 82-5) of

“The Sphere

With Centric and Eccentric scribbled o’er,

Cycle and Epicycle, Orb in Orb,”

applies therefore just as well to the astronomy of Coppernicus as to that of his predecessors; and it was Kepler (chapter VII.), writing more than half a century later, not Coppernicus, to whom the rejection of the epicycle and eccentric is due.