Fig. 70.—Motion in a circle.
171. Viewed as a purely general question, apart from its astronomical applications, the problem may be said to be to examine under what conditions a body can revolve with uniform speed in a circle.
Let A represent the position at a certain instant of a body which is revolving with uniform speed in a circle of centre O. Then at this instant the body is moving in the direction of the tangent A a to the circle. Consequently by Galilei’s First Law (chapter VI., §§ 130, 133), if left to itself and uninfluenced by any other body, it would continue to move with the same speed and in the same direction, i.e. along the line A a, and consequently would be found after some time at such a point as a. But actually it is found to be at B on the circle. Hence some influence must have been at work to bring it to B instead of to a. But B is nearer to the centre of the circle than a is; hence some influence must be at work tending constantly to draw the body towards O, or counteracting the tendency which it has, in virtue of the First Law of Motion, to get farther and farther away from O. To express either of these tendencies numerically we want a more complex idea than that of velocity or rate of motion, namely acceleration or rate of change of velocity, an idea which Galilei added to science in his discussion of the law of falling bodies (chapter VI., [§§ 116], 133). A falling body, for example, is moving after one second with the velocity of about 32 feet per second, after two seconds with the velocity of 64, after three seconds with the velocity of 96, and so on; thus in every second it gains a downward velocity of 32 feet per second; and this may be expressed otherwise by saying that the body has a downward acceleration of 32 feet per second per second. A further investigation of the motion in a circle shews that the motion is completely explained if the moving body has, in addition to its original velocity, an acceleration of a certain magnitude directed towards the centre of the circle. It can be shewn further that the acceleration may be numerically expressed by taking the square of the velocity of the moving body (expressed, say, in feet per second), and dividing this by the radius of the circle in feet. If, for example, the body is moving in a circle having a radius of four feet, at the rate of ten feet a second, then the acceleration towards the centre is (10 × 10)∕4 = 25 feet per second per second.
These results, with others of a similar character, were first published by Huygens—not of course precisely in this form—in his book on the Pendulum Clock (chapter VIII., [§ 158]); and discovered independently by Newton in 1666.
If then a body is seen to move in a circle, its motion becomes intelligible if some other body can be discovered which produces this acceleration. In a common case, such as when a stone is tied to a string and whirled round, this acceleration is produced by the string which pulls the stone; in a spinning-top the acceleration of the outer parts is produced by the forces binding them on to the inner part, and so on.
172. In the most important cases of this kind which occur in astronomy, a planet is known to revolve round the sun in a path which does not differ much from a circle. If we assume for the present that the path is actually a circle, the planet must have an acceleration towards the centre, and it is possible to attribute this to the influence of the central body, the sun. In this way arises the idea of attributing to the sun the power of influencing in some way a planet which revolves round it, so as to give it an acceleration towards the sun; and the question at once arises of how this “influence” differs at different distances. To answer this question Newton made use of Kepler’s Third Law (chapter VII., [§ 144]). We have seen that, according to this law, the squares of the times of revolution of any two planets are proportional to the cubes of their distances from the sun; but the velocity of the planet may be found by dividing the length of the path it travels in its revolution round the sun by the time of the revolution, and this length is again proportional to the distance of the planet from the sun. Hence the velocities of the two planets are proportional to their distances from the sun, divided by the times of revolution, and consequently the squares of the velocities are proportional to the squares of the distances from the sun divided by the squares of the times of revolution. Hence, by Kepler’s law, the squares of the velocities are proportional to the squares of the distances divided by the cubes of the distances, that is the squares of the velocities are inversely proportional to the distances, the more distant planet having the less velocity and vice versa. Now by the formula of Huygens the acceleration is measured by the square of the velocity divided by the radius of the circle (which in this case is the distance of the planet from the sun). The accelerations of the two planets towards the sun are therefore inversely proportional to the distances each multiplied by itself, that is are inversely proportional to the squares of the distances. Newton’s first result therefore is: that the motions of the planets—regarded as moving in circles, and in strict accordance with Kepler’s Third Law—can be explained as due to the action of the sun, if the sun is supposed capable of producing on a planet an acceleration towards the sun itself which is proportional to the inverse square of its distance from the sun; i.e. at twice the distance it is 1∕4 as great, at three times the distance 1∕9 as great, at ten times the distance 1∕100 as great, and so on.
The argument may perhaps be made clearer by a numerical example. In round numbers Jupiter’s distance from the sun is five times as great as that of the earth, and Jupiter takes 12 years to perform a revolution round the sun, whereas the earth takes one. Hence Jupiter goes in 12 years five times as far as the earth goes in one, and Jupiter’s velocity is therefore about 5∕12 that of the earth’s, or the two velocities are in the ratio of 5 to 12; the squares of the velocities are therefore as 5 × 5 to 12 × 12, or as 25 to 144. The accelerations of Jupiter and of the earth towards the sun are therefore as 25 ÷ 5 to 144, or as 5 to 144; hence Jupiter’s acceleration towards the sun is about 1∕28 earth, and if we had taken more accurate figures this fraction would have come out more nearly 1∕25. Hence at five times the distance the acceleration is 25 times less.
This law of the inverse square, as it may be called, is also the law according to which the light emitted from the sun or any other bright body varies, and would on this account also be not unlikely to suggest itself in connection with any kind of influence emitted from the sun.
173. The next step in Newton’s investigation was to see whether the motion of the moon round the earth could be explained in some similar way. By the same argument as before, the moon could be shewn to have an acceleration towards the earth. Now a stone if let drop falls downwards, that is in the direction of the centre of the earth, and, as Galilei had shewn (chapter VI., [§ 133]), this motion is one of uniform acceleration; if, in accordance with the opinion generally held at that time, the motion is regarded as being due to the earth, we may say that the earth has the power of giving an acceleration towards its own centre to bodies near its surface. Newton noticed that this power extended at any rate to the tops of mountains, and it occurred to him that it might possibly extend as far as the moon and so give rise to the required acceleration. Although, however, the acceleration of falling bodies, as far as was known at the time, was the same for terrestrial bodies wherever situated, it was probable that at such a distance as that of the moon the acceleration caused by the earth would be much less. Newton assumed as a working hypothesis that the acceleration diminished according to the same law which he had previously arrived at in the case of the sun’s action on the planets, that is that the acceleration produced by the earth on any body is inversely proportional to the square of the distance of the body from the centre of the earth.