200. Of his numerous contributions to astronomy, which touched almost every branch of the subject, his work on comets is the best known and probably the most important. He observed the comets of 1680 and 1682; he worked out the paths both of these and of a number of other recorded comets in accordance with Newton’s principles, and contributed a good deal of the material contained in the sections of the Principia dealing with comets, particularly in the later editions. In 1705 he published a Synopsis of Cometary Astronomy in which no less than 24 cometary orbits were calculated. Struck by the resemblance between the paths described by the comets of 1531, 1607, and 1682, and by the approximate equality in the intervals between their respective appearances and that of a fourth comet seen in 1456, he was shrewd enough to conjecture that the three later comets, if not all four, were really different appearances of the same comet, which revolved round the sun in an elongated ellipse in a period of about 75 or 76 years. He explained the difference between the 76 years which separate the appearances of the comet in 1531 and 1607, and the slightly shorter period which elapsed between 1607 and 1682, as probably due to the perturbations caused by planets near which the comet had passed; and finally predicted the probable reappearance of the same comet (which now deservedly bears his name) about 76 years after its last appearance, i.e. about 1758, though he was again aware that planetary perturbation might alter the time of its appearance; and the actual appearance of the comet about the predicted time (chapter XI., [§ 231]) marked an important era in the progress of our knowledge of these extremely troublesome and erratic bodies.
201. In 1693 Halley read before the Royal Society a paper in which he called attention to the difficulty of reconciling certain ancient eclipses with the known motion of the moon, and referred to the possibility of some slight increase in the moon’s average rate of motion round the earth.
This irregularity, now known as the secular acceleration of the moon’s mean motion, was subsequently more definitely established as a fact of observation; and the difficulties met with in explaining it as a result of gravitation have rendered it one of the most interesting of the moon’s numerous irregularities (cf. chapter XI., [§ 240], and chapter XIII., [§ 287]).
202. Halley also rendered good service to astronomy by calling attention to the importance of the expected transits of Venus across the sun in 1761 and 1769 as a means of ascertaining the distance of the sun. The method had been suggested rather vaguely by Kepler, and more definitely by James Gregory in his Optics published in 1663. The idea was first suggested to Halley by his observation of the transit of Mercury in 1677. In three papers published by the Royal Society he spoke warmly of the advantages of the method, and discussed in some detail the places and means most suitable for observing the transit of 1761. He pointed out that the desired result could be deduced from a comparison of the durations of the transit of Venus, as seen from different stations on the earth, i.e. of the intervals between the first appearance of Venus on the sun’s disc and the final disappearance, as seen at two or more different stations. He estimated, moreover, that this interval of time, which would be several hours in length, could be measured with an error of only about two seconds, and that in consequence the method might be relied upon to give the distance of the sun to within about 1∕500 part of its true value. As the current estimates of the sun’s distance differed among one another by 20 or 30 per cent., the new method, expounded with Halley’s customary lucidity and enthusiasm, not unnaturally stimulated astronomers to take great trouble to carry out Halley’s recommendations. The results, as we shall see ([§ 227]), were, however, by no means equal to Halley’s expectations.
203. In 1718 Halley called attention to the fact that three well-known stars, Sirius, Procyon, and Arcturus, had changed their angular distances from the ecliptic since Greek times, and that Sirius had even changed its position perceptibly since the time of Tycho Brahe. Moreover comparison of the places of other stars shewed that the changes could not satisfactorily be attributed to any motion of the ecliptic, and although he was well aware that the possible errors of observation were such as to introduce a considerable uncertainty into the amounts involved, he felt sure that such errors could not wholly account for the discrepancies noticed, but that the stars in question must have really shifted their positions in relation to the rest; and he naturally inferred that it would be possible to detect similar proper motions (as they are now called) in other so-called “fixed” stars.
204. He also devoted a good deal of time to the standing astronomical problem of improving the tables of the moon and planets, particularly the former. He made observations of the moon as early as 1683, and by means of them effected some improvement in the tables. In 1676 he had already noted defects in the existing tables of Jupiter and Saturn, and ultimately satisfied himself of the existence of certain irregularities in the motion of these two planets, suspected long ago by Horrocks (chapter VIII., [§ 156]); these irregularities he attributed correctly to the perturbations of the two planets by one another, though he was not mathematician enough to work out the theory; from observation, however, he was able to estimate the irregularities in question with fair accuracy and to improve the planetary tables by making allowance for them. But neither the lunar nor the planetary tables were ever completed in a form which Halley thought satisfactory. By 1719 they were printed, but kept back from publication, in hopes that subsequent improvements might be effected. After his appointment as Astronomer Royal in succession to Flamsteed (1720) he devoted special attention to getting fresh observations for this purpose, but he found the Observatory almost bare of instruments, those used by Flamsteed having been his private property, and having been removed as such by his heirs or creditors. Although Halley procured some instruments, and made with them a number of observations, chiefly of the moon, the age (63) at which he entered upon his office prevented him from initiating much, or from carrying out his duties with great energy, and the observations taken were in consequence only of secondary importance, while the tables for the improvement of which they were specially designed were only finally published in 1752, ten years after the death of their author. Although they thus appeared many years after the time at which they were virtually prepared and owed little to the progress of science during the interval, they at once became and for some time remained the standard tables for both the lunar and planetary motions (cf. § 226, and chapter XI., [§ 247]).
205. Halley’s remarkable versatility in scientific work is further illustrated by the labour which he expended in editing the writings of the great Greek geometer Apollonius (chapter II., [§ 38]) and the star catalogue of Ptolemy (chapter II., [§ 50]). He was also one of the first of modern astronomers to pay careful attention to the effects to be observed during a total eclipse of the sun, and in the vivid description which he wrote of the eclipse of 1715, besides referring to the mysterious corona, which Kepler and others had noticed before (chapter VII., [§ 145]), he called attention also to “a very narrow streak of a dusky but strong Red Light,” which was evidently a portion of that remarkable envelope of the sun which has been so extensively studied in modern times (chapter XIII., [§ 301]) under the name of the chromosphere.
It is worth while to notice, as an illustration of Halley’s unselfish enthusiasm for science and of his power of looking to the future, that two of his most important pieces of work, by which certainly he is now best known, necessarily appeared during his lifetime as of little value, and only bore their fruit after his death (1742), for his comet only returned in 1759, when he had been dead 17 years, and the first of the pair of transits of Venus, from which he had shewn how to deduce the distance of the sun, took place two years later still ([§ 227]).
206. The third Astronomer Royal, James Bradley, is popularly known as the author of two memorable discoveries, viz. the aberration of light and the nutation of the earth’s axis. Remarkable as these are both in themselves and on account of the ingenious and subtle reasoning and minutely accurate observations by means of which they were made, they were in fact incidents in a long and active astronomical career, which resulted in the execution of a vast mass of work of great value.
The external events of Bradley’s life may be dealt with very briefly. Born in 1693, he proceeded in due course to Oxford (B.A. 1714, M.A. 1717), but acquired his first knowledge of astronomy and his marked taste for the subject from his uncle James Pound, for many years rector of Wansted in Essex, who was one of the best observers of the time. Bradley lived with his uncle for some years after leaving Oxford, and carried out a number of observations in concert with him. The first recorded observation of Bradley’s is dated 1715, and by 1718 he was sufficiently well thought of in the scientific world to receive the honour of election as a Fellow of the Royal Society. But, as his biographer[115] remarks, “it could not be foreseen that his astronomical labours would lead to any establishment in life, and it became necessary for him to embrace a profession.” He accordingly took orders, and was fortunate enough to be presented almost at once to two livings, the duties attached to which do not seem to have interfered appreciably with the prosecution of his astronomical studies at Wansted.