I may slip in here a quotation from Emerson. "In Newton," said Emerson, "science was as easy as breathing; he used the same wit to weigh the moon that he used to buckle his shoes; and all his life was simple, wise, and majestic. So it was in Archimedes—always self-same, like the sky. In Linnæus, in Franklin, the like sweetness and equality—no stilts, no tiptoe; and their results are wholesome and memorable to all men."

What Lord Kelvin had done, and was still to do, could not be described by any writing of less than encyclopaedic scope, and a knowledge as wide and deep as his own. Helmholtz may be quoted, as he has been quoted by many who attempted the larger task from a scientific standpoint. Helmholtz was his intimate friend. Helmholtz said: "He is an eminent mathematician, but the gift to translate real facts into mathematical equations, and vice versa, is, by far, more rare than to find a solution of a given mathematical problem, and in this direction he is most eminent and original."

Kelvin's first published paper was a defence of the mathematician, Fourier. His second was on "The Uniform Motion of Heat in Homogeneous Solid Bodies, and Its Connection With The Mathematical Theory of Electricity." I think he was eighteen then. He was certainly showing the bent of his mind. Fifty or sixty years later he said, in a presidential address to the Royal Society: "Tribulation, not undisturbed progress, gives life and soul, and leads to success where success can be reached." I do not know what his tribulations were, but they may have been the tribulations of defeat. He may have faced many defeats, but he won more successes. And the world was more concerned with scientific discoveries during his career than it had been in the time of Count Rumford and Humphry Davy, whose work in disproving that heat is a material body had been forgotten because nobody seemed to think it more important than curious. Sometime in the eighteen-forties James Prescott Joule ascertained the dynamical equivalent of heat, and settled the fact that heat is a mode of motion. Kelvin may be said to have leaped to the side of his friend.

Lord Kelvin was the first to appreciate the importance of Joule's discovery, and it was not long before he placed the whole subject of thermodynamics on a scientific basis. He put his conclusions into these easily understandable words: "During any transformation of energy of one form into energy of another form, there is always a certain amount of energy rendered unavailable for further useful application. No known process in nature is exactly reversible: that is to say, there is no known process by which we can convert a given amount of energy of one form into energy of another form, and then, reversing the process, reconvert the energy of the second form thus obtained into the original quantity of energy of the first form. In fact, during any transformation of energy from one form into another, there is always a certain portion of energy changed into heat in the process of conversion, and the heat thus produced becomes dissipated and diffused by radiation and conduction. Consequently there is a tendency in nature for all the energy in the universe, of whatever kind it be, gradually to assume the form of heat, and having done so to become equally diffused. Now, were all the energy of the universe converted into uniformly diffused heat, it would cease to be available for producing mechanical effort, since, for that purpose, we must have a hot source and a cooler condenser. This gradual degradation of energy is perpetually going on, and, sooner or later, unless there be some restorative power of which we have, at present, no knowledge whatever, the present state of things must come to an end."

He revealed the Electrodynamics of Qualities of Metals; the size of atoms, the horse-power of the sun; he determined the rigidity of the earth, the laws of the tides, made far-reaching discoveries in electricity, in vortex motion; it might be said of him that he took the universe for his field.

But in a chapter like this one is tempted to dwell too long on high achievements. What attracted one more than the achievements was the man, the kindly, sympathetic man who loved truth not celebrity, and work more than its rewards. He was ever the same, whether one met him in Glasgow, London, at sea, or in America, the same simple, straightforward, kindly character. He retained his mental activity to the end. He died at eighty-four, and seemed only to be departing on another journey in quest of truth and friendship.

On one of the afternoons when I sat with him in his study, within the precincts of the university, he said, "Patience, great patience is the need of this generation. It asks results before it earns them. Man is too wasteful of the resources he finds in the earth. The most of our coal is lost in smoke; the most of our heat is dissipated in the air. We need patience not less than courage in dealing with our problems." The study was lined with engravings and photographs. Darwin and Joule and Faraday looked down from the walls, and there were pictures of the cable-laying ships, the Hooper, and the Great Eastern. There were trophies of travel,—from specimens of sea-bottom along the African coast, to quite personal mementos of his lectures at Johns Hopkins University and other places in America.

A typical day of Lord Kelvin's was, in outline, this: After breakfast he would, at nine, face his class in the university and lecture for an hour. I heard him in such an hour lecture on "Kepler's Laws." He lectured to his class three days a week. After the lecture he would go to White's where he was perfecting an electric metre. After White's he would return to the university and lecture until one o'clock, say, on the "Higher Mathematics." Then home to lunch. After lunch consulting work on the lighting of a town by electricity. After that an hour in Lady Kelvin's drawing-room, taking tea with friends. Then work in the study over the laws governing the formation of crystals. Then dinner. Then calculations in the study, or writing a paper for one of the numerous societies of which he was a working member. In the intervals, with his secretary's aid, he would attend to his correspondence. And, if waiting for his secretary, out of a coat pocket would come the little green book, and into it would go notes, calculations, or diagrams, perhaps all three. That little green book would come out whenever he had a minute to spare, in his dressing-room, or on the stairs, or in a train, or a cab, wherever he happened to be, and the thought flashed. I often wondered what his thoughts were on the conservation of personal energy.