But small stems and similar supports are best ascended by twining; and this calls out powers of another and higher order. The twining stem does not grow around its support, but winds around it, and it does this by a movement the nature of which is best observed in stems which have not yet reached their support, or have overtopped it and stretched out beyond it. Then it may be seen that the extending summit, reaching farther and farther as it grows, is making free circular sweeps, by night as well as by day, and irrespective of external circumstances, except that warmth accelerates the movement, and that the general tendency of young stems to bend toward the light may, in case of lateral illumination, accelerate one-half the circuit while it equally retards the other. The arrest of the revolution where the supporting body is struck, while the portion beyond continues its movement, brings about the twining. As to the proximate cause of this sweeping motion, a few simple experiments prove that it results from the bowing or bending of the free summit of the stem into a more or less horizontal position (this bending being successively to every point of the compass, through an action which circulates around the stem in the direction of the sweep), and of the consequent twining, i.e., "with the sun," or with the movement of the hands of a watch, in the hop, or in the opposite direction in pole-beans and most twiners. Twining plants, therefore, ascend trees or other stems by an action and a movement of their own, from which they derive advantage. To plants liable to be overshadowed by more robust companions, climbing is an economical method of obtaining a freer exposure to light and air with the smallest possible expenditure of material. But twiners have one disadvantage: to rise ten feet they must produce fifteen feet of stem or thereabouts, according to the diameter of the support, and the openness or closeness of the coil. A rootlet-climber saves much in this respect, but has a restricted range of action, and other disadvantages.
There are two other modes, which combine the utmost economy of material with freer range of action. There are, in the first place, leaf-climbers of various sorts, agreeing only in this, that the duty of laying hold is transferred to the leaves, so that the stem may rise in a direct line. Sometimes the blade or leaflets, or some of them, but more commonly their slender stalks, undertake the work, and the plant rises as a boy ascends a tree, grasping first with one hand or arm, then with the other. Indeed, the comparison, like the leaf-stalk, holds better than would be supposed; for the grasping of the latter is not the result of a blind groping in all directions by a continuous movement, but of a definite sensitiveness which acts only upon the occasion. Most leaves make no regular sweeps; but when the stalks of a leaf-climbing species come into prolonged contact with any fitting extraneous body, they slowly incurve and make a turn around it, and then commonly thicken and harden until they attain a strength which may equal that of the stem itself. Here we have the faculty of movement to a definite end, upon external irritation, of the same nature with that displayed by Dionaea and Drosera, although slower for the most part than even in the latter. But the movement of the hour-hand of the clock is not different in nature or cause from that of the second-hand.
Finally—distribution of office being, on the whole, most advantageous and economical, and this, in the vegetable kingdom, being led up to by degrees—we reach, through numerous gradations, the highest style of climbing plants in the tendril-climber. A tendril morphologically, is either a leaf or branch of stem, or a portion of one, specially organized for climbing. Some tendrils simply turn away from light, as do those of grape-vines, thus taking the direction in which some supporting object is likely to be encountered; most are indifferent to light; and many revolve in the manner of the summit of twining stems. As the stems which bear these highly-endowed tendrils in many cases themselves also revolve more or less, though they seldom twine, their reach is the more extensive; and to this endowment of automatic movement most tendrils add the other faculty, that of incurving and coiling upon prolonged touch, or even brief contact, in the highest degree. Some long tendrils, when in their best condition, revolve so rapidly that the sweeping movement may be plainly seen; indeed, we have seen a quarter-circuit in a Passiflora sicyoides accomplished in less than a minute, and the half-circuit in ten minutes; but the other half (for a reason alluded to in the next paragraph) takes a much longer time. Then, as to the coiling upon contact, in the case first noticed in this country,[XI-3] in the year 1858, which Mr. Darwin mentions as having led him into this investigation, the tendril of Sicyos was seen to coil within half a minute after a stroke with the hand, and to make a full turn or more within the next minute; furnishing ocular evidence that tendrils grasp and coil in virtue of sensitiveness to contact, and, one would suppose, negativing Sachs's recent hypothesis that all these movements are owing "to rapid growth on the side opposite to that which becomes concave"—a view to which Mr. Darwin objects, but not so strongly as he might. The tendril of this sort, on striking some fitting object, quickly curls round and firmly grasps it; then, after some hours, one side shortening or remaining short in proportion to the other, it coils into a spire, dragging the stem up to its support, and enabling the next tendril above to secure a readier hold.
In revolving tendrils perhaps the most wonderful adaptation is that by which they avoid attachment to, or winding themselves upon, the ascending summit of the stem that bears them. This they would inevitably do if they continued their sweep horizontally. But when in its course it nears the parent
stem the tendril moves slowly, as if to gather strength, then C.~ stiffens and rises into an erect position parallel with it, and C so passes by the dangerous point; after which it comes rapidly down to the horizontal position, in which it moves until it again approaches and again avoids the impending obstacle.
Climbing plants are distributed throughout almost all the natural orders. In some orders climbing is the rule, in most it is the exception, occurring only in certain genera. The tendency of stems to move in circuits—upon which climbing more commonly depends, and out of which it is conceived to have been educed—is manifested incipiently by many a plant which does not climb. Of those that do there are all degrees, from the feeblest to the most efficient, from those which have no special adaptation to those which have exquisitely-endowed special organs for climbing. The conclusion reached is, that the power "is inherent, though undeveloped, in almost every plant;" "that climbing plants have utilized and perfected a widely-distributed and incipient capacity, which, as far as we can see, is of no service to ordinary plants."
Inherent powers and incipient manifestations, useless to their possessors but useful to their successors—this, doubtless, is according to the order of Nature; but it seems to need something more than natural selection to account for it.