The Westminster Reviewer cleverly expounds how it does so. The exposition is too long to quote, and an abstract is unnecessary, for the argument adverse to design is, as usual, a mere summation or illustration of the facts and assumptions of the hypothesis itself, by us freely admitted. Simplest forms began; variations occurred among them; under the competition consequent upon the arithmetical or geometrical progression in numbers, only the fittest for the conditions survive and propagate, vary further, and are similarly selected; and so on.
"Progress having once begun by the establishment of species, the laws of atavism and variability will suffice to tell the remainder of the story. The colonies gifted with the faculty of forming others in their likeness will soon by their increase become sole masters of the field; but the common enemy being thus destroyed, the struggle for life will be renewed among the conquerors. The saying that 'a house divided against itself cannot stand,' receives in Nature its flattest contradiction. Civil war is here the very instrument of progress; it brings about the survival of the fittest. Original differences in the cell-colonies, however slight, will bring about differences of life and action; the latter, continued through successive generations, will widen the original differences of structure; innumerable species will thus spring up, branching forth in every direction from the original stock; and the competition of these species among each other for the ground they occupy, or the food they seek, will bring out and develop the powers of the rivals. One chief cause of superiority will lie in the division of labor instituted by each colony; or, in other words, in the localization of the colony's functions. In the primitive associations (as in the lowest organisms existing now), each cell performed much the same work as its neighbor, and the functions necessary to the existence of the whole (alimentation, digestion, respiration, etc.) were exercised by every colonist in his own behalf. Social life, however, acting upon the cells as it acts upon the members of a human family, soon created differences among them—differences ever deepened by continuance, and which, by narrowing the limits of each colonist's activity, and increasing his dependence on the rest, rendered him fitter for his special task. Each function was thus gradually monopolized; but it came to be the appanage of a single group of cells, or organ; and so excellent did this arrangement prove, so greatly were the powers of each commonwealth enhanced by the division of its labor, that the more organs a colony possessed, the more likely it was to succeed in its struggle for life. . . We shall go no further, for the reader will easily fill out the remainder of the picture for himself. Man is but an immense colony of cells, in which the division of labor, together with the centralization of the nervous system, has reached its highest limit. It is chiefly to this that his superiority is due; a superiority so great, as regards certain functions of the brain, that he may be excused for having denied his humbler relatives, and dreamed that, standing alone in the centre of the universe, sun, moon, and stars, were made for him."
Let us learn from the same writer how both eyes of the flounder get, quite unintentionally, on the same side of the head. The writer makes much of this case (see p. 306), and we are not disposed to pass it by:
"A similar application may be made to the Pleuronecta. Presumably, these fishes had adopted their peculiar mode of swimming long before the position of their eyes became adapted to it. A spontaneous variation occurred, consisting in the passage of one eye to the opposite side of the head; and this variation afforded its possessors such increased facilities of sight that in the course of time the exception became the rule. But the remarkable point is, that the law of heredity not only preserved the variation itself, but the date of its occurrence; and that, although for thousands of years the adult Pleuronecta have had both eyes on the same side, the young still continue during their earlier development to exhibit the contrary arrangement, just as if the variation still occurred spontaneously."
Here a wonderful and one would say unaccountable transference takes place in a short time. As Steenstrup showed, one eye actually passes through the head while the young fish is growing. We ask how this comes about; and we are told, truly enough, that it takes place in each generation because it did so in the parents and in the whole line of ancestors. Why offspring should be like parent is more than any one can explain; but so it is, in a manner so nearly fixed and settled that we can count on it; yet not from any absolute necessity that we know of, and, indeed, with sufficiently striking difference now and then to demonstrate that it might have been otherwise, or is so in a notable degree. This transference of one eye through the head, from the side where it would be nearly useless to that in which it may help the other, bears all the marks of purpose, and so carries the implication of design. The case is adduced as part of the evidence that Darwinian evolution supersedes design. But how? Not certainly in the way this goes on from generation to generation; therefore, doubtless in the way it began. So we look for the explanation of how it came about at the first unintentionally or accidentally; how, under known or supposed conditions, it must have happened, or at least was likely to happen. And we read, "A spontaneous variation occurred, consisting in the passage of one eye to the opposite side of the head." That is all; and we suppose there is nothing more to be said. In short, this surprising thing was undesigned because it took place, and has taken place ever since! The writer presumes, moreover (but this is an obiter dictum), that the peculiarity originated long after flounders had fixed the habit of swimming on one side (and in this particular case it is rather difficult to see how the two may have gone on pari passu), and so he cuts away all obvious occasion for the alteration through the summation of slight variations in one direction, each bringing some advantage.
This is a strongly-marked case; but its features, although unusually prominent, are like those of the general run of the considerations by which evolution is supposed to exclude design. Those of the penultimate citation and its context are all of the same stamp. The differences which begin as variations are said to be spontaneous—a metaphorical word of wide meanings—are inferred to be casual (whereas we only know them to be occult), or to be originated by surrounding agencies (which is not in a just sense true); they are legitimately inferred to be led on by natural selection, wholly new structures or organs appear, no one can say how, certainly no one can show that they are necessary outcomes of what preceded; and these two are through natural selection kept in harmony with the surroundings, adapted to different ones, diversified, and perfected; purposes are all along subserved through exquisite adaptations; and yet the whole is thought to be undesigned, not because of any assigned reason why this or that must have been thus or so, but simply because they all occurred in Nature! The Darwinian theory implies that the birth and development of a species are as natural as those of an individual, are facts of the same kind in a higher order. The alleged proof of the absence of design from it amounts to a simple reiteration of the statement, with particulars. Now, the marks of contrivance in the structure of animals used not to be questioned because of their coming in the way of birth and development. It is curious that a further extension of this birth and development should be held to disprove them. It appears to us that all this is begging the question against design in Nature, instead of proving that it may be dispensed with.
Two things have helped on this confusion. One is the notion of the direct and independent creation of species, with only an ideal connection between them, to question which was thought to question the principle of design. The other is a wrong idea of the nature and province of natural selection. In former papers we have over and over explained the Darwinian doctrine in this respect. It may be briefly illustrated thus: Natural selection is not the wind which propels the vessel, but the rudder which, by friction, now on this side and now on that, shapes the course. The rudder acts while the vessel is in motion, effects nothing when it is at rest. Variation answers to the wind: "Thou hearest the sound thereof, but canst not tell when it cometh and whither it goeth." Its course is controlled by natural selection, the action of which, at any given moment, is seemingly small or insensible; but the ultimate results are great. This proceeds mainly through outward influences. But we are more and more convinced that variation, and therefore the ground of adaptation, is not a product of, but a response to, the action of the environment. Variations, in other words, the differences between individual plants and animals, however originated, are evidently not from without but from within—not physical but physiological.
We cannot here assign particularly the reasons for this opinion. But we notice that the way in which varieties make their appearance strongly suggests it. The variations of plants which spring up in a seed-bed, for instance, seem to be in no assignable relation to the external conditions. They arise, as we say, spontaneously, and either with decided characters from the first, or with obvious tendencies in one or few directions. The occult power, whatever it be, does not seem in any given case to act vaguely, producing all sorts of variations from a common centre, to be reduced by the struggle for life to fewness and the appearance of order; there are, rather, orderly indications from the first. The variations of which we speak, as originating in no obvious casual relation to the external conditions, do not include dwarfed or starved, and gigantesque or luxuriant forms, and those drawn up or expanded on the one hand, or contracted and hardened on the other, by the direct difference in the supply of food and moisture, light and heat. Here the action of the environment is both obvious and direct. But such cases do not account for much in evolution.
Moreover, while we see how the mere struggle and interplay among occurring forms may improve them and lead them on, we cannot well imagine how the adaptations which arrest our attention are thereby secured. Our difficulty, let it be understood, is not about the natural origination of organs. To the triumphant outcry, "How can an organ, such as an eye, be formed under Nature?" we would respond with a parallel question, How can a complex and elaborate organ, such as a nettle-sting, be formed under Nature? But it is so formed. In the same species some individuals have these exquisitely-constructed organs and some have not. And so of other glands, the structure and adaptation of which, when looked into, appear to be as wonderful as anything in Nature. The impossibility lies in conceiving how the obvious purpose was effectuated under natural selection alone. This, under our view, any amount of gradation in a series of forms goes a small way in explaining. The transit of a young flounder's eye across the head is a capital instance of a wonderful thing done under Nature, and done unaccountably.
But simpler correlations are involved in similar difficulty. The superabundance of the pollen of pine-trees above referred to, and in oak-trees, is correlated with chance fertilization under the winds. In the analogous instance of willows a diminished amount of pollen is correlated with direct transportation by insects. Even in so simple a case as this it is not easy to see how this difference in the conveyance would reduce the quantity of pollen produced. It is, we know, in the very alphabet of Darwinism that if a male willow-tree should produce a smaller amount of pollen, and if this pollen communicated to the offspring of the female flowers it fertilized a similar tendency (as it might), this male progeny would secure whatever advantage might come from the saving of a certain amount of work and material; but why should it begin to produce less pollen? But this is as nothing compared with the arrangements in orchid-flowers, where new and peculiar structures are introduced—structures which, once originated and then set into variation, may thereupon be selected, and thereby led on to improvement and diversification. But the origination, and even the variation, still remains unexplained either by the action of insects or by any of the processes which collectively are personified by the term natural selection. We really believe that these exquisite adaptations have come to pass in the course of Nature, and under natural selection, but not that natural selection alone explains or in a just sense originates them. Or rather, if this term is to stand for sufficient cause and rational explanation, it must denote or include that inscrutable something which produces—as well as that which results in the survival of—"the fittest."