I still adhere entirely to this explanation; not of course in the sense that an actual physical struggle has ever taken place between the mortal and immortal varieties of any species. If Götte understood me thus, he may be justified by the brief explanations given in the essay to which I have alluded; but when he also attributes to me the opinion that such hypothetically immortal Metazoa had but a very limited period for reproduction, I fail to see what part of the essay in question can be brought forward in support of his statement. Only under some such supposition can I be reproached with having assumed the existence of a process of natural selection which could never be effective, because any advantage which accrued to the species from the shortening of the duration of life could not make itself felt in a more rapid propagation of the short-lived individuals. The statement ‘that in this and in every other case it is a sufficient explanation of the processes of natural selection to render it probable that any kind of advantage is gained’[[81]] is indeed erroneous. The explanation ought rather to be ‘that the forms in question would for ever transmit their characters to a greater number of descendants than the other forms.’ I have not however as yet attempted to think out in detail such processes of natural selection as would limit the somatic part of the Metazoan body to a short term of existence, and I only wished to emphasize the general principle lying at the basis of the whole process, without stating the precise manner in which it operates.

If I now attempt to take this course, and to reconstruct theoretically the gradual appearance of natural death in the Metazoa, I must begin by again alluding to Götte’s criticisms in reference to the operation of natural selection.

I consider death as an adaptation, and believe that it has arisen by the operation of natural selection. Götte[[82]], however, concludes from this that ‘the first origin of hereditary and consequently (for the organization in question) necessary death, is not explained but already assumed.’ ‘The operation and significance of the principle of utility consists in selecting the fittest from among the structures and processes which are at hand, and not in directly creating new ones. Every new structure arises at first, quite independently of any utility, from certain material causes present in a number of individuals, and when it has proved useful and is transmitted, it extends, according to the laws of the survival of the fittest, in the group of animals in which it appeared. This extension will undergo further increase with every advance in utility which results from further structural changes, until it extends over the whole group. So that usefulness effects the preservation and the distribution of new structures, but has nothing whatever to do with the causes of their primary origin and their consequent transmission to all other individuals. Indeed, on these hereditary causes the necessity of the structures in question depends, so that their usefulness in no way explains their necessity.’

‘These conclusions, when applied to the origin of natural death called forth by internal causes, would show that it became inevitable and hereditary in a number of the originally immortal Metazoa, before there could be any question as to the benefits derived from its influence. Such influence must have consisted in the fact that more descendants survived the struggle for existence and were able to enter upon reproduction among the individuals which had inherited the predisposition to die than among the potentially immortal beings which would be damaged in the struggle for existence, and would therefore be exposed to still further injuries. The existing necessity for natural death in all Metazoa might therefore be derived in an unbroken line of descent from the first mortal Metazoan, of which the death became inevitable from internal causes, before the principle of utility could operate in favour of its dissemination.’

In reply to this I would urge: that it has been very often maintained that natural selection can produce nothing new, but can only bring to the front something which existed previously to the exercise of choice; but this argument is only true in a very limited sense. The complex world of plants and animals which we see around us contains much that we should call new in comparison with the primitive beings from which, as we believe, everything has developed by means of natural selection. No leaves or flowers, no digestive system, no lungs, legs, wings, bones or muscles were present in the primitive forms, and all these must have arisen from them according to the principle of natural selection. These primitive forms were in a certain sense predestined to develope them, but only as possibilities, and not of necessity; nor were they preformed in them. The course of development, as it actually took place, first became a necessity by the action of natural selection, that is by the choice of various possibilities, according to their usefulness in fitting the organism for its external conditions of life. If we once accept the principle of natural selection, then we must admit that it really can create new structures, instincts, etc., not suddenly or discontinuously, but working by the smallest stages upon the variations that appear. These changes or variations must be looked upon as very insignificant, and are, as I have of late attempted to show[[83]], quantitative in their nature; and it is only by their accumulation that changes arise which are sufficiently striking to attract our attention, so that we call them ‘new’ organs, instincts, etc.

These processes may be compared to a man on a journey who proceeds from a certain point on foot by short stages, at any given time, and in any direction. He has then the choice of an infinite number of routes over the whole earth. If such a man begins his wanderings in obedience to the impulse of his own will, his own pleasure or interest,—proceeding forwards, to the right or left, or even backwards, with longer or shorter pauses, and starting at any particular time,—it is obvious that the route taken lies in the man himself and is determined by his own peculiar temperament. His judgment, experience, and inclination will influence his course at each turn of his journey, as new circumstances arise. He will turn aside from a mountain which he considers too lofty to be climbed; he will incline to the right, if this direction appears to afford a better passage over a swollen stream; he will rest when he reaches a pleasant halting-place, and will hurry on when he knows that enemies beset him. And in spite of the perfectly free choice open to him, the course he takes is in fact decided by both the place and time of his starting and by circumstances which—always occurring at every part of the journey—impel him one way or the other; and if all the factors could be ascertained in the minutest detail, his course could be predicted from the beginning.

Such a traveller represents a species, and his route corresponds with the changes which are induced in it by natural selection. The changes are determined by the physical nature of the species, and by the conditions of life by which it is surrounded at any given time. A number of different changes may occur at every point, but only that one will actually develope which is the most useful, under existing external conditions. The species will remain unaltered as long as it is in perfect equilibrium with its surroundings, and as soon as this equilibrium is disturbed it will commence to change. It may also happen that, in spite of all the pressure of competing species, no further change occurs because no one of the innumerable very slight changes, which are alone possible at any one time, can help in the struggle; just as the traveller who is followed by an overpowering enemy, is compelled to succumb when he has been driven down to the sea. A boat alone could save him, without it he must perish; and so it sometimes happens that a species can only be saved from destruction by changes of a conspicuous kind, and these it is unable to produce.

And just as the traveller, in the course of his life, can wander an unlimited distance from his starting-point, and may take the most tortuous and winding route, so the structure of the original organism has undergone manifold changes during its terrestrial life. And just as the traveller at first doubts whether he will ever get beyond the immediate neighbourhood of his starting-point, and yet after some years finds himself very far removed from it—so the insignificant changes which distinguish the first set of generations of an organism lead on through innumerable other sets, to forms which seem totally different from the first, but which have descended from them by the most gradual transition. All this is so obvious that there is hardly any need of a metaphor to explain it, and yet it is frequently misunderstood, as shown by the assertion that natural selection can create nothing new: the fact being that it so adds up and combines the insignificant small deviations presented by natural variation, that it is continually producing something new.

If we consider the introduction of natural death in connection with the foregoing statements, we may imagine the process as taking place in such a way that,—with the differentiation of Heteroplastids from Homoplastids, and the appearance of division of labour among the homogeneous cell-colonies,—natural selection not only operated upon the physiological peculiarities of feeding, moving, feeling, or reproduction, but also upon the duration of the life of single cells. At this developmental stage there would, at any rate, be no further necessity for maintaining the power of limitless duration. The somatic cells might therefore assume a constitution which excluded the possibility of unending life, provided only that such a constitution was advantageous for them.

It may be objected that cells of which the ancestors possessed the power of living for ever, could not become potentially mortal (that is subject to death from internal causes) either suddenly or gradually, for such a change would contradict the supposition which attributes immortality to their ancestors and to the products of their division. This argument is valid, but it only applies so long as the descendants retain the original constitution. But as soon as the two products of the fission of a potentially immortal cell acquire different constitutions by unequal fission, another possibility arises. Now it is conceivable that one of the products of fission might preserve the physical constitution necessary for immortality, but not the other; just as it is conceivable that such a cell—adapted for unending life—might bud off a small part, which would live a long time without the full capabilities of life possessed by the parent cell; again, it is possible that such a cell might extrude a certain amount of organic matter (a true excretion) which is already dead at the moment it leaves the body. Thus it is possible that true unequal cell-division, in which only one half possesses the condition necessary for increasing, may take place; and in the same way it is conceivable that the constitution of a cell determines the fixed duration of its life, examples of which are before us in the great number of cells in the higher Metazoa, which are destroyed by their functions. The more specialized a cell becomes, or in other words, the more it is intrusted with only one distinct function, the more likely is this to be the case: who then can tell us, whether the limited duration of life was brought about in consequence of the restricted functions of the cell or whether it was determined by other advantages[[84]]? In either case we must maintain that the disadvantages arising from a limited duration of the cells are more than compensated for by the advantages which result from their highly effective specialized functions. Although no one of the functions of the body is necessarily attended by the limited duration of the cells which perform it, as is proved by the persistence of unicellular forms, yet any or all of them might lead to such a limitation of existence without in any way injuring the species, as is proved by the Metazoa. But the reproductive cells cannot be limited in this way, and they alone are free from it. They could not lose their immortality, if indeed the Metazoa are derived from the immortal Protozoa, for from the very nature of that immortality it cannot be lost. From this point of view the body, or soma, appears in a certain sense as a secondary appendage of the real bearer of life,—the reproductive cells.