We must, for the present, leave unanswered the question—upon what changes in the physical constitution of protoplasm does the variation in the capacity for cell-duration depend; and what are the causes which determine the greater or smaller number of cell-generations. I mention this obvious difficulty because it is the custom to meet every attempt to search deeper into the common phenomena of life with the reproach that so much is still left unexplained. If we must wait for the explanation of these processes until we have ascertained the molecular structure of cells, together with the changes that occur in this structure and the consequences of the changes, we shall probably never understand either the one or the other. The complex processes of life can only be followed by degrees, and we can only hope to solve the great problem by attacking it from all sides.

Therefore it is, in my opinion, an advance if we may assume that length of life is dependent upon the number of generations of somatic cells which can succeed one another in the course of a single life; and, furthermore, that this number, as well as the duration of each single cell-generation, is predestined in the germ itself. This view seems to me to derive support from the obvious fact that the duration of each cell-generation, and also the number of generations, undergo considerable increase as we pass from the lowest to the highest Metazoa.

In an earlier work[[87]] I have attempted to show how exactly the duration of life is adapted to the conditions by which it is surrounded; how it is lengthened or shortened during the formation of species, according to the conditions of life in each of them; in short, how it is throughout an adaptation to these conditions. A few points however were not touched upon in the work referred to, and these require discussion; their consideration will also throw some light upon the origin of natural death and the forms of life affected by it.

I have above explained the limited duration of the life of somatic cells in the lower Metazoa—Orthonectides—as a phenomenon of adaptation, and have ascribed it to the operation of natural selection, at the same time pointing out that the existence of immortal Metazoan organisms is conceivable. If the Monoplastides are able to multiply by fission, through all time, then their descendants, in which division of labour has induced the antithesis of reproductive and somatic cells, might have done the same. If the Homoplastid cells reproduced their kind uninterruptedly, equal powers of duration must have been possible for the two kinds of Heteroplastid cells; they too might have been immortal so far as immortality only depends upon the capacity for unlimited reproduction.

But the capacity for existence possessed by any species is not only dependent upon the power within it; it is also influenced by the conditions of the external world, and this renders necessary the process which we call adaptation. Thus it is just as inconceivable that either a homogeneous or a heterogeneous cell-colony possessing the physiological value of a multicellular individual should continue to grow to an unlimited extent by continued cell-division, as it is inconceivable that a unicellular being should increase in size to an unlimited extent. In the latter case the process of cell-division imposes a limit upon the size attained by growth. In the former, the requirements of nutrition, respiration, and movement must prescribe a limit to the growth of the cell-colony which constitutes the individual of the higher species, just as in the case of the unicellular Monoplastides, and it does not affect the argument if we consider this limitation to be governed by the process of natural selection. It would only be possible to regulate the relations of the single cells of the colony to each other by fixing the number of cells within narrow limits. During the development of Magosphaera—one of the Homoplastides—the cells arrange themselves in the form of a hollow sphere, lying in a gelatinous envelope. But the fact that reproduction does not follow the simple unvarying rhythm of unicellular organisms is of more importance; for a rhythm of a higher order appears, in which each cell of the colony separates from its neighbours, when it has reached a certain size, and proceeds by very rapid successive divisions to give rise to a certain number of parts which arrange themselves as a new colony. The number of divisions is controlled by the number of cells to which the colony is limited, and at first this number may have been very small. With the introduction of this secondary higher rhythm during reproduction, the first germ of the Polyplastides became evident; for then each process of fission was not, as in unicellular organisms, equivalent to all the others; for in a colony of ten cells the first fission differs from the second, third, or tenth, both in the size of the products of division and also in remoteness from the end of the process. This secondary fission is what we know as segmentation.

It seems to me of little importance whether the first process of segmentation takes place in the water or within a cyst, although it is quite possible that the necessity for some protective structure appeared at a very early period, in order to shield the segmenting cell from danger.

It is impossible to accept Götte’s conception of the germ (Keim), and at this point the question arises as to its true meaning. I should propose to include under this term every cell, cytode, or group of cells which, while not possessing the structure of the mature individual of the species, possesses the power of developing into it under certain circumstances. The emphasis is now laid upon the expression development, which is something opposed to simple growth, without change of form. A cell which becomes a complete individual by growth alone is not a germ but an individual, although a very small one. For example, the small encapsuled Heliozoon, which arises as the product of multiple fission, is not a germ in our sense of the word. It is an individual, provided with all the characteristic marks of its species, and it has only to protrude the retracted processes (pseudopodia) and to take in the expelled water (formation of vacuoles) in order to become capable of living in a free state. In this sense of the word, germs are not confined to the Polyplastides, but are found in many Monoplastides. There is nevertheless, in my opinion, a profound and significant difference between the germs of these two groups. And this lies not so much in the morphological as in the developmental significance of these structures. As far as I have been able to compare the facts, I may state that the germs of the Monoplastides are entirely of secondary origin, and have never formed the phyletic origin of the species in which they are found. For instance, the spore-formation of the Gregarines resulted from a gradually increasing process of division, which was concentrated into the period of encystment; and it was induced by a necessity for rapid multiplication due to the parasitic life and unfavourable surroundings of these animals. If Gregarines were free-living animals, they would not need this method of reproduction. The encysted animal would probably divide into eight, four, or two parts, or perhaps, like many Infusoria[[88]], it would not divide at all, so that the whole reproduction would depend on simple fission alone during the free state.

The original mode of reproduction among the Monoplastides was undoubtedly simple fission. This became connected with encystment, which originally took place without multiplication; and only when the divisions in the cyst became excessively numerous did such minute plastids appear that a genuine process of development had to be undergone in order to produce complete individuals. Here we have the general conception of the germ as I defined it. Its limitations are naturally not very sharply defined, for it is impossible to draw an absolute distinction between simple growth and true development accompanied by changes in form and structure. For instance, Häckel’s Protomyxa aurantiaca divides within its cyst into numerous plastids, which might be spoken of as germs. But the changes of form which they undergo before they become young Protomyxae are very small, and for the most part depend upon the expansion of the body, which existed in the capsule as a contracted pear-shaped mass. It is therefore more correct to speak only of the simple growth of the products of the fission of the parent organism, and to look upon these products as young Protomyxae rather than germs. On the other hand, the young animals which creep out of the germs (the ‘spores’) of Gregarina gigantea, described by E. van Beneden, differ essentially from the adult, and pass through a series of developmental stages before they assume the characteristic form of a Gregarine.

This is true development[[89]]. But such a method of germ-formation and development are found most frequently, although not exclusively, among the parasitic Monoplastides, and this fact alone serves to indicate their secondary origin. It is a form of ontogenetic development differing from that of the Polyplastides in that it does not revert to a phyletically primitive condition of the species, but, on the contrary, exhibits stages which first appear in the phyletic development of the specific form. The Psorosperms were only formed after the Gregarines had become established as a group. The amoeboid organisms which creep out of them are in no way to be regarded as the primitive forms of the Gregarines, even if the latter may have resembled them, but they are coenogenetic forms produced by the necessity for a production of numerous and very minute germs. The necessity for a process of genuine development perhaps depends upon the small amount of material contained in one of these germs, and on other conditions, such as change of host, change of medium, etc. It therefore results that the fundamental law of biogenesis does not apply to the Monoplastides; for these forms are either entirely without a genuine ontogeny and only possess the possibility of growth, or else they are only endowed with a coenogenetic ontogeny[[90]].

Some authorities may be inclined to limit the above proposition, and to maintain that we must admit the possibility that we are likely to occasionally meet with an ontogeny of which the stages largely correspond with the most important stages in the phyletic development of the species, and that the ontogenetic repetition of the phylogeny, although not the rule, may still occur as a rare exception in the Protozoa.