Hence, according to Nägeli, the different stages of ontogeny arise out of the activities of different parts of the idioplasm: certain groups of micellae in the idioplasm represent the germs (‘Anlagen’) of certain structures in the organism: when any such germ reacts under stimulation it produces the corresponding structure. It seems to me that this hypothesis bears some resemblance to Darwin’s theory of pangenesis. I think that Nägeli’s preformed germs of structures (‘Anlagen’) and his groups of such germs are highly elaborated equivalents of the gemmules of pangenesis, which, according to Darwin, manifest activity when their turn comes, or, according to Nägeli, when they react under stimulation. When a group of such germs, by their active growth or by their ‘irritation,’ have caused a similar active growth or a similar irritation in the next group, the former may come to rest, or may remain in a state of activity together with its successor, for a longer or shorter period. Its activity may even last for an unlimited time, as is the case in the formation of leafy shoots in many plants.

Here, again, we recognize the fact that Nägeli’s whole hypothesis is intimately connected with the supposition that the entire mass of idioplasm is continuous throughout the organism. Sometimes one part of the idioplasm and sometimes another part is irritated, and then produces the corresponding organ. But if, on the other hand, the idioplasm does not represent a directly continuous mass, but is composed of thousands of single nucleoplasms which only act together through the medium of their cell-bodies, then we must substitute the conception of ‘ontogenetic stages of development of the idioplasm’ for the conception of germs of structure (‘Anlagen’). The different varieties of nucleoplasm which arise during ontogeny represent, as it were, the germs of Nägeli (‘Anlagen’), because, by means of their molecular structure, they create a specific constitution in the cell-bodies over which they have control, and also because they determine the succession of future nuclei and cells.

It is in this sense, and no other, that I can speak of the presence of preformed germs (‘Anlagen’) in the idioplasm. We may suppose that the idioplasm of the first segmentation nucleus is but slightly different from that of the second ontogenetic stage, viz. that of the two following segmentation nuclei. Perhaps only a few groups of micellae have been displaced or somewhat differently arranged. But nevertheless such groups of micellae were not the germs (‘Anlagen’) of a second stage which pre-existed in the first stage, for the two are distinguished by the possession of a different molecular structure. This structure in the second stage, under normal conditions of development, again brings about the change by which the different molecular structure of the third stage is produced, and so on.

It may be argued that von Baer’s well-known and fundamental law of development is opposed to the hypothesis that the idioplasm of successive ontogenetic stages must gradually assume a simpler molecular structure. The organization of the species has, on the whole, increased immensely in complexity during the course of phylogeny: and if the phyletic stages are repeated in the ontogeny, it seems to follow that the structure of the idioplasm must become more complex in the course of ontogeny instead of becoming simpler. But the complexity of the whole organism is not represented in the molecular structure of the idioplasm of any single nucleus, but by that of all the nuclei present at any one time. It is true that the germ-cell, or rather the idioplasm of the germ-nucleus, must gain greater complexity as the organism which arises from it becomes more complex; but the individual nucleoplasms of each ontogenetic stage may become simpler, while the whole mass of idioplasms in the organism (which, taken together, represent the stage in question) does not by any means lose in complexity.

If we must therefore assume that the molecular structure of the nucleoplasm becomes simpler in the course of ontogeny, as the number of structures which it potentially contains become smaller, it follows that the nucleoplasm in the cells of fully differentiated tissues—such as muscle, nerve, sense-organs, or glands—must possess relatively the most simple molecular structure; for it cannot originate any fresh modification of nucleoplasm, but can only continue to produce cells of the same structure, although it does not always retain this power.

We are thus brought back to the fundamental question as to how the germ-cells arise in the organism. Is it possible that the nucleoplasm of the germ-cell, with its immensely complex molecular structure, potentially containing all the specific peculiarities of an individual, can arise from the nucleoplasm of any of the body-cells,—a substance which, as we have just seen, has lost the power of originating any new kind of cell, because of the continual simplification of its structure during development? It seems to me that it would be impossible for the simple nucleoplasm of the somatic cells to thus suddenly acquire the power of originating the most complex nucleoplasm from which alone the entire organism can be built up: I cannot see any evidence for the existence of a force which could effect such a transformation.

This difficulty has already been appreciated by other writers. Nussbaum’s[[123]] theoretical views, which I have already mentioned, also depend upon the hypothesis that cells which have once become differentiated for the performance of special functions cannot be re-transformed into sexual cells: he also concludes that the latter are separated from all other cells at a very early period of embryonic development, before any histological differentiation has taken place. Valaoritis[[124]] has also recognised that the transformation of histologically differentiated cells into sexual cells is impossible. He was led to believe that the sexual cells of Vertebrata arise from the white blood corpuscles, for he looked upon these latter as differentiated to the smallest extent possible. Neither of these views can be maintained. The former, because the sexual cells of all plants and most animals are not, as a matter of fact, separated from the somatic cells at the beginning of ontogeny; the latter, because it is contradicted by the fact that the sexual cells of vertebrates do not arise from blood corpuscles, but from the germinal epithelium. But even if this fact had not been ascertained we should be compelled to reject Valaoritis’ hypothesis on theoretical grounds, for it is an error to assume that white blood corpuscles are undifferentiated, and that their nucleoplasm is similar to the germ-plasm. There is no nucleoplasm like that of the germ-cell in any of the somatic cells, and no one of these latter can be said to be undifferentiated. All somatic cells possess a certain degree of differentiation, which may be rigidly limited to one single direction, or may take place in one of many directions. All these cells are widely different from the egg-cell from which they originated: they are all separated from it by many generations of cells, and this fact implies that their idioplasms possess a widely different structure from the idioplasm, or germ-plasm, of the egg-cell. Even the nuclei of the two first segmentation spheres cannot possess the same idioplasm as that of the first segmentation nucleus, and it is, of course, far less possible for such an idioplasm to be present in the nucleus of any of the later cells of the embryo. The structure of the idioplasm must necessarily become more and more different from that of the first segmentation nucleus, as the development of the embryo proceeds. The idioplasm of the first segmentation nucleus, and of this nucleus alone, is germ-plasm, and possesses a structure such that an entire organism can be produced from it. Many writers appear to consider it a matter of course that any embryonic cell can reproduce the entire organism, if placed under suitable conditions. But, when we carefully look into the subject, we see that such powers are not even possessed by those cells of the embryo which are nearest to the egg-cell—viz. the first two segmentation spheres. We have only to remember the numerous cases in which one of them forms the ectoderm of the animal while the other produces the endoderm, in order to admit the validity of this objection.

But if the first segmentation spheres are not able to develope into a complete organism, how can this be the case with one of the later embryonic cells, or one of the cells of the fully developed animal body? It is true that we speak of certain cells as being ‘of embryonic character,’ and only recently Kölliker[[125]] has given a list of such cells, among which he includes osteoblasts, cartilage cells, lymph corpuscles, and connective tissue corpuscles: but even if these cells really deserve such a designation, no explanation of the formation of germ-cells is afforded, for the idioplasm of the latter must be widely different from that of the former.

It is an error to suppose that we gain any further insight into the formation of germ-cells by referring to these cells of so-called ‘embryonic character,’ which are contained in the body of the mature organism. It is of course well known that many cells are characterized by very sharply defined histological differentiation, while others are but slightly differentiated; but it is as difficult to imagine that germ-cells can arise from the latter as from the former. Both classes of cells contain idioplasm with a structure different from that which is contained in the germ-cell, and we have no right to assume that any of them can form germ-cells until it is proved that somatic idioplasm is capable of undergoing re-transformation into germ-idioplasm.

The same argument applies to the cells of the embryo itself, and it therefore follows that those instances of early separation of sexual from somatic cells, upon which I have often insisted as indicating the continuity of the germ-plasm, do not now appear to be of such conclusive importance as at the time when we were not sure about the localization of the idioplasm in the nuclei. In the great majority of cases the germ-cells are not separated at the beginning of embryonic development, but only in some one of the later stages. A single exception is found in the pole-cells (‘Polzellen’) of Diptera, as was shown many years ago by Robin[[126]] and myself[[127]]. These are the first cells formed in the egg, and according to the later observations of Metschnikoff[[128]] and Balbiani[[129]], they become the sexual glands of the embryo. Here therefore the germ-plasm maintains a true unbroken continuity. The nucleus of the egg-cell directly gives rise to the nuclei of the pole-cells, and there is every reason to believe that the latter receive unchanged a portion of the idioplasm of the former, and with it the tendencies of heredity. But in all other cases the germ-cells arise by division from some of the later embryonic cells, and as these belong to a more advanced ontogenetic stage in the development of the idioplasm, we can only conclude that continuity is maintained, by assuming (as I do) that a small part of the germ-plasm persists unchanged during the division of the segmentation nucleus and remains mixed with the idioplasm of a certain series of cells, and that the formation of true germ-cells is brought about at a certain point in the series by the appearance of cells in which the germ-plasm becomes predominant. But if we accept this hypothesis it does not make any difference, theoretically, whether the germ-plasm becomes predominant in the third, tenth, hundredth, or millionth generation of cells. It therefore follows that cases of early separation of the germ-cells afford no proof of a direct persistence of the parent germ-cells in those of the offspring; for a cell the offspring of which become partly somatic and partly germ-cells cannot itself have the characters of a germ-cell; but it may nevertheless contain germ-idioplasm, and may thus transfer the substance which forms the basis of heredity from the germ of the parent to that of the offspring.